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This talk. ..

v

Statistical models on function spaces for elastic functional data and
issues.

v

Model-based pairwise registration of curves/functions.

v

How to define and sample from distribution on warping functions of
[0,1] and S*?

v

One or two applications.
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Where to define models for elastic functional data?

» Original data space

Functions: L2([0, 1], R);
Curves: AC(D,R"), L?(D,RR") where D € {[0,1],S*}.

» Ambient/Top/Pre-shape space

Functions: L2([0, 1], R) (or sometimes S°°);
Curves: S* (open) or its subset (closed).

» Quotient/Shape space

Functions: L2([0, 1], R)/I" where T is group of warp maps of [0, 1];
Curves: S*°/(I' x SO(n)) for open curves.
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Where to define models for elastic functional data?

Laws of stochastic processes are natural models:

» Original data space. Easy.

For e.g. Gaussian process on L2(D,R"); diffusion bridges as
solutions of SDEs.

» Ambient/Top/Pre-shape space. Hard.

For e.g. Marginalization/projection of Gaussian measure on L.? to
get one on S* is not straightforward.

» Quotient/Shape space. Impossibly hard.

No invariant measure for infinite-dimensional warping group.

In principle, we can have p(data) = [ p(datalgroup)dp(group).



Example: mean estimation with marginal models

Models for a random curve that are roughly of the form

X(t) = (u(t). g(t)) “+" €(t), g€G
where:

€ is a stochastic process (likelihood given g);

>
> (u, g) is action of group element g on y;
> 1 is a deterministic mean/template;

>

g is a stochastic process (random effect/prior on G)

Integrate out g over G.
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Focus of this talk: Stochastic pairwise registration

Let I := {7y : D — D} be a class of warping functions.
Match f; : D — R¥, i = 1,2 with:

>

argmin d(fi, (f2,7)),
yer

with a distribution on ;

» or a posterior summary based on a Bayesian model:

likelihood on {f1(t) — (%2, )|y} and prior distribution on T.



Candidate classes of warping functions
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Distributions on warping functions on [0, 1]

We wish to have a random function v : [0, 1] — [0, 1], increasing with
~v(0) =0 and (1) = 1.

1E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208
2 Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-316.
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Distributions on warping functions on [0, 1]

We wish to have a random function v : [0, 1] — [0, 1], increasing with
~v(0) =0 and (1) = 1.
» No 'Haar’ measure on —only those quasi-invariant with respect to
composition exist. 1.

» Pushforwards of equivalent Gaussian measures on L2 tangent spaces
of S under Exponential maps under are mutually singular. 2.

» Subordinator processes (a.s. non-negative, non-decreasing Levy
process) are natural candidates (e.g. Gamma process).

> Define a map ¢ : G[0,1] — Diff'[0, 1] as
fot eg(s)ds

g(t) — ®(g(t)) == m~

Choose g to be a Gaussian process for e.g.

Statistical issue: Not easy to centre these distributions at desired ~y or
sample from.

1E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208
2 Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-316.



A new variant of the curve/function registration problem is common and
motivates the class of warping functions.



Pairwise alignment with landmarks

y(t) =t

0 ta

0 tl :tz ‘ 1
» If on f; a landmark is present at t; € [0, 1] and correspondingly at t,
on fy, then there is a warping constraint: (t2) = ty.



Pairwise alignment with landmarks

fi:S - R?
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Desiderata in a Py on

P

A 0 a b 1 o i

0 t ty bty by

. Optimal local alignment ‘matches’

Decompose global alignment . .

. . optimal global one ?:

into multiple local ones: A

. . Pyt —t,) (Self-similarity)

Py restricted to 7z, 1, is in-

dependent Of ]P)Q reStnCted to 9 Focus Invariance: A. Trouve and L. Younes. SIAM
Journal on Control and Optimization, 39:1112-1135, 2000

Vo, 1\ [ts,t2] (Markov like)
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Program

» Landmark constraints imply that diffeomorphism group for I is not
appropriate.

» Decomposability and Markov-like property point towards a process
with independent increments. (Levy)

» We first examine a simple sampling algorithm, and then pose the
question:

"Does there exists a distribution Py from which the warping
functions are being sampled from? Does it possess the desiderata?"



(Remarkably simple) Sampling algorithm 3

I3

L/ I

o i L I o1

1. Choose a (non-random) set of ordered points
O=tto<ti<tr < - <th1<tp:=1;

2. sample (p1, ..., ps) from Dirichlet distribution with parameters
0(1,...,1);

3. construct a warp map on [0, 1] by linear interpolation.

3w. Cheng, I. L. Dryden and X. Huang. Bayesian Analysis, 11, 447-475, 2015



Sampling algorithm: A generalisation

o1 h A 1
1. Choose a (non-random) set of ordered points
O=_th<th<b< - <th_i1<t,:=1,

2. set pj = Xj.n, — Xi—1.n,§ = 1,...,n, where x;., are order statistics from
F. (x; ~ U[0,1] implies (p1, ..., pn) ~ Dirichlet (1,...,1));

3. construct a warp map on [0, 1] by linear interpolation.
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‘Nice' distribution as n — oo0?

Consider the process

[nt]
Zp, nt— ntJ)antJ+17 t e [0, 1].

Proposition (Degenerate distribution)

1. Algorithm of Chen et al.
Under a uniform partition, in C([0, 1]) with uniform topology: Y,
converges in probability to v(t) = t; the process v/n(Y,(t) — t)
converges in distribution to a standard Brownian Bridge process.
2. Generalised version

Under some conditions on F, Y, converges in probability to F~*(t)
in C[0,1] with uniform topology.



Example with F as Beta(1,2)
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The algorithm can be salvaged . ..

P {
Plpi{{ -

There are two main ingredients in the algorithm:
» Construction of partition 0 < t; < --- < t, < 1 of [0, 1];

» sampling of increments from a distribution on the unit simplex.



The algorithm can be salvaged . ..

P { -
Plpi{{ -

There are two main ingredients in the algorithm:
» Construction of partition 0 < t; < --- < t, < 1 of [0, 1];
» sampling of increments from a distribution on the unit simplex.

Choosing a random partition does the trick.
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Modified algorithm with random partition

1. Choose 6 > 0;

2. discretize [0, 1] with order statistics
O=th<ti<th<---<ty,_1 <t,:=10f arandom sample from
distribution function H on [0, 1];
3. sample an n-dimensional Dirichlet distributed random vector
(p1,- .-, Ppn) with parameters set to 0 (t1.n — toiny -« - s tnin — tn—1:n);
4. construct a warp map on [0, 1] by linear interpolation.
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Example

Samples of warps with partition based Beta (5,1) CDF as H
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Justification for modified algorithm

» Consider partition based on H.

» Independently, let (p1, ..., p,) obtained as spacings of an i.i.d
sequence x; from a density f (not necessarily Dirichlet distributed).



Justification for modified algorithm

» Consider partition based on H.

» Independently, let (p1, ..., p,) obtained as spacings of an i.i.d
sequence x; from a density f (not necessarily Dirichlet distributed).

> Let A(x) = 0 [ <~ dy for 0 > 0.

» Set vy =prand v, =p1+---+p;,i =2,...,n and consider the
transformed random variables z; , = A\~ (nf(F~*({;.,))vi) where
0 < (j,n < 1is a deterministic sequence such that
maxi<i<n |7 — Gi,nl = O(1/n).



Process based on random partition

Theorem

» Under some conditions on f, the linearly interpolated version of the
process

Go(t) =Y A Nzinly<e, te[01],

converges weakly to the time-changed pure jump Gamma process
G o H in the Skorohod M topology (J1 topology is too strong).



Process based on random partition

Theorem

» Under some conditions on f, the linearly interpolated version of the
process

Go(t) =Y A Nzinly<e, te[01],

converges weakly to the time-changed pure jump Gamma process
G o H in the Skorohod M topology (J1 topology is too strong).

» Do H = G(H(t))/G(H(0)) is referred to as the Dirichlet process
with sample paths as warp maps of [0, 1] with

ED? o H=H, V6.



Interpretation of Py g, the law of Do H

Conditioned on a partition 0 =: tg., < t1.p < -+ < th_1.n < tpp =1
from H,

Pr.o(v(t1:n) € dxi, ..., Y(th—1:n) € dXp—1)
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4T Ferguson (1973). Annals of Statistics. 209-230



Interpretation of Py g, the law of Do H

Conditioned on a partition 0 =: tg., < t1.p < -+ < th_1.n < tpp =1
from H,

]P)H,Q(’y(tl:n) S dX17 e 7’7(tn71:n) S anfl)

o r(a) : 5 . (tin—ti—1:n)
— le;l F @0t — 5 10)) ,1:[1(x, Xi—1) dxq...dx,_1.

» Py ¢ is push-forward of the well-known Dirichlet process* on P[0, 1],
the set of prob measures on [0, 1], under the map that takes a
probability measure to its quantile function.

4T Ferguson (1973). Annals of Statistics. 209-230



Comments

> Py ¢ can be centred at desired warp map: choice of H when
constructing the random partition.

> 6 acts like a variance parameter.
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Some properties of Py g

> It has full support on set of warp maps I for every 6 (several
topologies coincide).

> For every v € I, 4P ¢ is absolutely continuous w.r.t Pp ¢
(quasi-invariance under composition).

» When restricted to [a, b] and rescaled, the resulting distribution is
]D)G(H(b)fH(a)) (Self—similarity).

> Independent of Dy ¢ on [0, 1]\[a, b] except at a and b (‘Markov').

> As § — 0, Dy ¢ converges to uniform distribution on the set
{TiH(eyay - 0 < t < 1),

> as § — oo, Dy g converges to point mass at H(t).
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Py g generates warps with jumps. ..

Jumps correspond to large deformations of subsets of [0, 1]. How large?
How often do they occur? Let &; , := np; — log n be normalised
increments.

Consider the process Y, (t) := Z,Lflj (& — E(&ilg<1)], 0 <t < 1.

Theorem
The sequence Y, converges weakly in the J; topology to a real-valued
Levy jump process with Levy measure v(dy) = e~Ydy in DJ0,1].



ECG Data: Bayesian model on Ambient/Top space

» Gaussian likelihood on g1 — g2(y)|y, where g;,i = 1,2 are Square
Root Velocity transform (SRV) of f;,i =1,2.

» Dy prior on [ with H(t) = t.

1, 1,

1500
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500! 74
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| 0 /
500 05 1 0 0.5 1 05 1

Green: Aligned function; estimated warp map. (Pointwise) Posterior
credible intervals. (Blue: less uncertainty; Red: more uncertainty).
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Sampling when D = S! by unwrapping

{ AC warp maps of Sl} Bijecgion { AC warp maps of [0, 1]} x St

1. Choose c from 1 on [0, 1] (by identifying St with R/Z);
2. Sample v from Dy o H; and
3. Set y5(t) := (7y(t) + ¢) mod 1.



Simulated Annealing with Py g

Solve: |argmin_ . d(fi(t), fa(7(t)))

> Choose Vpew € N(Yeurrent)

//// \\‘\
» :
/ K \ by sampling P, ..o
’

/N Gara) centered 2t eurenc

\
,/ (temperature) \\

/ » compute

“ . ‘},/mm : A = d(f(t), f2(Ynew(t)));
\\ Tren ’/‘J’ > if A <0, Yeurrent < Vnew:
\ / else Veurrent <= Ynew with

\ / prob e~

~_ > repeat.



Aligning shapes of closed curves in R?: Simulated annealing

Geodesic path between leftmost and rightmost figures under SRVF.
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Summary

» Landmark constraints under curves impose constraints on warp
maps.

> For alignment with landmarks Py o is compatible with Focus
invariance and Decomposability.

> These characterize Py ¢.

» Algorithm is trivial to implement, and can generate maps from
distribution centered at derived at any warp map.



Details and more examples in paper:
Partition-based sampling of warp maps for curve alignment.
arXiv:1708.04891.



