Models for warping functions and registration

Karthik Bharath

University of Nottingham

Work with Sebastian Kurtek (with much help from Anuj, Eric and Huiling Le)
 Supported by NSF (DMS 1613054); NIH (R01-CA214955).

NSF-CBMS workshop on Elastic Functional Data Analysis 2018

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

This talk...

- Statistical models on function spaces for elastic functional data and issues.
- Model-based pairwise registration of curves/functions.
- ► How to define and sample from distribution on warping functions of [0, 1] and S¹?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One or two applications.

Original data space

Functions: $\mathbb{L}^2([0,1],\mathbb{R})$; Curves: $AC(D,\mathbb{R}^n)$, $\mathbb{L}^2(D,\mathbb{R}^n)$ where $D \in \{[0,1],\mathbb{S}^1\}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Original data space

Functions: $\mathbb{L}^2([0,1],\mathbb{R})$; Curves: $AC(D,\mathbb{R}^n)$, $\mathbb{L}^2(D,\mathbb{R}^n)$ where $D \in \{[0,1],\mathbb{S}^1\}$.

ション ふゆ く 山 マ チャット しょうくしゃ

Ambient/Top/Pre-shape space

Functions: $\mathbb{L}^2([0,1],\mathbb{R})$ (or sometimes \mathbb{S}^∞); Curves: \mathbb{S}^∞ (open) or its subset (closed).

Original data space

Functions: $\mathbb{L}^2([0,1],\mathbb{R})$; Curves: $AC(D,\mathbb{R}^n)$, $\mathbb{L}^2(D,\mathbb{R}^n)$ where $D \in \{[0,1],\mathbb{S}^1\}$.

Ambient/Top/Pre-shape space

Functions: $\mathbb{L}^2([0,1],\mathbb{R})$ (or sometimes \mathbb{S}^∞); Curves: \mathbb{S}^∞ (open) or its subset (closed).

Quotient/Shape space

Functions: $\mathbb{L}^2([0,1],\mathbb{R})/\Gamma$ where Γ is group of warp maps of [0,1]; Curves: $\mathbb{S}^{\infty}/(\Gamma \times SO(n))$ for open curves.

Laws of stochastic processes are natural models:

Laws of stochastic processes are natural models:

• Original data space. Easy.

For e.g. Gaussian process on $\mathbb{L}^2(D, \mathbb{R}^n)$; diffusion bridges as solutions of SDEs.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Laws of stochastic processes are natural models:

• Original data space. Easy.

For e.g. Gaussian process on $\mathbb{L}^2(D, \mathbb{R}^n)$; diffusion bridges as solutions of SDEs.

Ambient/Top/Pre-shape space. Hard.

For e.g. Marginalization/projection of Gaussian measure on \mathbb{L}^2 to get one on \mathbb{S}^∞ is not straightforward.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Laws of stochastic processes are natural models:

• Original data space. Easy.

For e.g. Gaussian process on $\mathbb{L}^2(D, \mathbb{R}^n)$; diffusion bridges as solutions of SDEs.

Ambient/Top/Pre-shape space. Hard.

For e.g. Marginalization/projection of Gaussian measure on \mathbb{L}^2 to get one on \mathbb{S}^∞ is not straightforward.

ション ふゆ く 山 マ チャット しょうくしゃ

Quotient/Shape space. Impossibly hard.

No invariant measure for infinite-dimensional warping group.

Laws of stochastic processes are natural models:

• Original data space. Easy.

For e.g. Gaussian process on $\mathbb{L}^2(D, \mathbb{R}^n)$; diffusion bridges as solutions of SDEs.

Ambient/Top/Pre-shape space. Hard.

For e.g. Marginalization/projection of Gaussian measure on \mathbb{L}^2 to get one on \mathbb{S}^∞ is not straightforward.

Quotient/Shape space. Impossibly hard.

No invariant measure for infinite-dimensional warping group.

In principle, we can have $p(data) = \int p(data|group)dp(group)$.

Example: mean estimation with marginal models

Models for a random curve that are roughly of the form

$$X(t)=(\mu(t),g(t))$$
 "+" $\epsilon(t), g\in G$

ション ふゆ く 山 マ チャット しょうくしゃ

where:

- ϵ is a stochastic process (likelihood given g);
- (μ, g) is action of group element g on μ ;
- μ is a deterministic mean/template;
- ▶ g is a stochastic process (random effect/prior on G)

Integrate out g over G.

Focus of this talk: Stochastic pairwise registration

Let $\Gamma := \{\gamma : D \to D\}$ be a class of warping functions. Match $f_i : D \to \mathbb{R}^k, i = 1, 2$ with:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Focus of this talk: Stochastic pairwise registration

Let $\Gamma := \{\gamma : D \to D\}$ be a class of warping functions. Match $f_i : D \to \mathbb{R}^k, i = 1, 2$ with: arg min $d(f_1, (f_2, \gamma))$, with a distribution on Γ ;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Focus of this talk: Stochastic pairwise registration

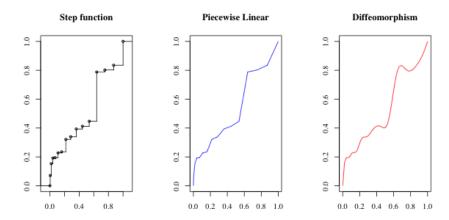
Let $\Gamma := \{\gamma : D \to D\}$ be a class of warping functions. Match $f_i : D \to \mathbb{R}^k, i = 1, 2$ with: $\arg\min_{\gamma \in \Gamma} d(f_1, (f_2, \gamma)),$ with a distribution on Γ ;

or a posterior summary based on a Bayesian model:

likelihood on $\{f_1(t) - (f_2, \gamma)|\gamma\}$ and prior distribution on Γ .

ション ふゆ アメリア メリア しょうくの

Candidate classes of warping functions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We wish to have a random function $\gamma : [0,1] \rightarrow [0,1]$, increasing with $\gamma(0) = 0$ and $\gamma(1) = 1$.

¹E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208 ²E. Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-316→ <ヨ> < ● < ● ● ● ● ● ● ● ● ●

We wish to have a random function $\gamma : [0,1] \rightarrow [0,1]$, increasing with $\gamma(0) = 0$ and $\gamma(1) = 1$.

No 'Haar' measure on Γ—only those quasi-invariant with respect to composition exist. ¹.

¹E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208

²E. Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-316> (=> (=>) ()

We wish to have a random function $\gamma : [0,1] \rightarrow [0,1]$, increasing with $\gamma(0) = 0$ and $\gamma(1) = 1$.

- No 'Haar' measure on Γ—only those quasi-invariant with respect to composition exist. ¹.
- ▶ Pushforwards of equivalent Gaussian measures on L² tangent spaces of S[∞] under Exponential maps under are mutually singular.².

¹E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208

²E. Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-336> (=> (=>)

We wish to have a random function $\gamma : [0,1] \rightarrow [0,1]$, increasing with $\gamma(0) = 0$ and $\gamma(1) = 1$.

- No 'Haar' measure on Γ—only those quasi-invariant with respect to composition exist. ¹.
- ▶ Pushforwards of equivalent Gaussian measures on L² tangent spaces of S[∞] under Exponential maps under are mutually singular.².
- Subordinator processes (a.s. non-negative, non-decreasing Levy process) are natural candidates (e.g. Gamma process).

¹E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208

²E. Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-316) 🕢 📳 🗸 🗄 🖉 🖉 🔍 🕐

We wish to have a random function $\gamma : [0,1] \rightarrow [0,1]$, increasing with $\gamma(0) = 0$ and $\gamma(1) = 1$.

- No 'Haar' measure on Γ—only those quasi-invariant with respect to composition exist. ¹.
- ▶ Pushforwards of equivalent Gaussian measures on L² tangent spaces of S[∞] under Exponential maps under are mutually singular.².
- Subordinator processes (a.s. non-negative, non-decreasing Levy process) are natural candidates (e.g. Gamma process).
- Define a map $\Phi : C_0[0,1] \rightarrow \text{Diff}^1[0,1]$ as

$$g(t)\mapsto \Phi(g(t)):=rac{\int_0^t e^{g(s)ds}}{\int_0^1 e^{g(s)}ds}.$$

Choose g to be a Gaussian process for e.g.

¹E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208

² E. Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-316) - २ हे - २ हे - २ २ 😤 - 🖉 ५ 🤆

We wish to have a random function $\gamma : [0,1] \rightarrow [0,1]$, increasing with $\gamma(0) = 0$ and $\gamma(1) = 1$.

- No 'Haar' measure on Γ—only those quasi-invariant with respect to composition exist. ¹.
- ▶ Pushforwards of equivalent Gaussian measures on L² tangent spaces of S[∞] under Exponential maps under are mutually singular.².
- Subordinator processes (a.s. non-negative, non-decreasing Levy process) are natural candidates (e.g. Gamma process).
- Define a map $\Phi : C_0[0,1] \rightarrow \text{Diff}^1[0,1]$ as

$$g(t)\mapsto \Phi(g(t)):=rac{\int_0^t e^{g(s)ds}}{\int_0^1 e^{g(s)}ds}$$

Choose g to be a Gaussian process for e.g.

Statistical issue: Not easy to centre these distributions at desired γ or sample from.

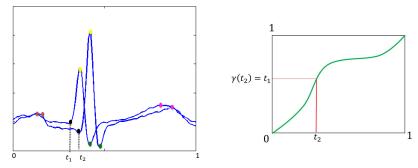
¹E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208

² E. Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-316) - २ हे - २ हे - २ २ 😤 - 🖉 ५ 🤆

A new variant of the curve/function registration problem is common and motivates the class of warping functions.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Pairwise alignment with landmarks

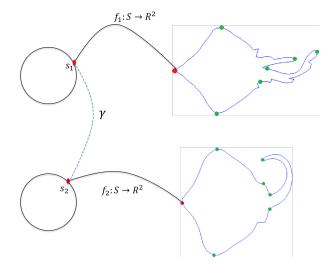


イロト イポト イヨト イヨト

э

If on f₁ a landmark is present at t₁ ∈ [0,1] and correspondingly at t₂ on f₂, then there is a warping constraint: γ(t₂) = t₁.

Pairwise alignment with landmarks

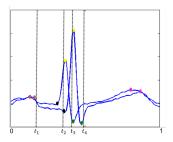


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Desiderata in a \mathbb{P}_{θ} on Γ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Desiderata in a \mathbb{P}_{θ} on Γ

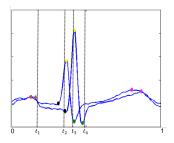


Decompose global alignment into multiple local ones: \mathbb{P}_{θ} restricted to $\gamma_{|[t_1, t_2]}$ is independent of \mathbb{P}_{θ} restricted to $\gamma_{|[0,1]\setminus[t_1, t_2]}$ (Markov like)

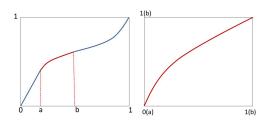
・ロッ ・雪 ・ ・ ヨ ・ ・

ж

Desiderata in a \mathbb{P}_{θ} on Γ



Decompose global alignment into multiple local ones: \mathbb{P}_{θ} restricted to $\gamma_{|[t_1, t_2]}$ is independent of \mathbb{P}_{θ} restricted to $\gamma_{|[0,1]\setminus[t_1, t_2]}$ (Markov like)



Optimal local alignment 'matches' optimal global one ^a: $\mathbb{P}_{\theta(t_2-t_1)}$ (Self-similarity)

イロト 不得 とうき イヨト

^a Focus Invariance: A. Trouve and L. Younes. SIAM Journal on Control and Optimization, 39:1112-1135, 2000

- Landmark constraints imply that diffeomorphism group for Γ is not appropriate.
- Decomposability and Markov-like property point towards a process with independent increments. (Levy)

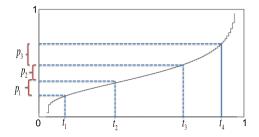
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Landmark constraints imply that diffeomorphism group for Γ is not appropriate.
- Decomposability and Markov-like property point towards a process with independent increments. (Levy)
- We first examine a simple sampling algorithm, and then pose the question:

"Does there exists a distribution \mathbb{P}_{θ} from which the warping functions are being sampled from? Does it possess the desiderata?"

ション ふゆ アメリア メリア しょうくの

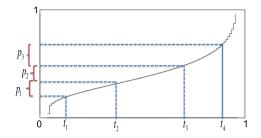
(Remarkably simple) Sampling algorithm ³



- 1. Choose a (non-random) set of ordered points $0 =: t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n := 1;$
- 2. sample (p_1, \ldots, p_n) from Dirichlet distribution with parameters $\theta(1, \ldots, 1)$;
- 3. construct a warp map on [0, 1] by linear interpolation.

³W. Cheng, I. L. Dryden and X. Huang. Bayesian Analysis, 11, 447-475, 2015 ∢ 🗇 ≻ ∢ ≣ ≻ ∢ ≣ ≻ → ≣ → ∽ ९ ୯

Sampling algorithm: A generalisation



- 1. Choose a (non-random) set of ordered points $0 =: t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n := 1;$
- 2. set $p_i = x_{i:n} x_{i-1:n}$, i = 1, ..., n, where $x_{i:n}$ are order statistics from F. $(x_i \sim U[0, 1] \text{ implies } (p_1, ..., p_n) \sim \text{Dirichlet } (1, ..., 1));$
- 3. construct a warp map on [0, 1] by linear interpolation.

'Nice' distribution as $n \to \infty$?

Consider the process

$$Y_n(t) := \sum_{i=1}^{\lfloor nt
floor} p_i + (nt - \lfloor nt
floor) p_{\lfloor nt
floor+1}, \quad t \in [0, 1].$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

'Nice' distribution as $n \to \infty$?

Consider the process

$$Y_n(t) := \sum_{i=1}^{\lfloor nt
floor} p_i + (nt - \lfloor nt
floor) p_{\lfloor nt
floor+1}, \quad t \in [0, 1].$$

Proposition (Degenerate distribution)

1. Algorithm of Chen et al.

Under a uniform partition, in C([0,1]) with uniform topology: Y_n converges in probability to $\gamma(t) = t$; the process $\sqrt{n}(Y_n(t) - t)$ converges in distribution to a standard Brownian Bridge process.

ション ふゆ く 山 マ チャット しょうくしゃ

'Nice' distribution as $n \to \infty$?

Consider the process

$$Y_n(t) := \sum_{i=1}^{\lfloor nt
floor} p_i + (nt - \lfloor nt
floor) p_{\lfloor nt
floor+1}, \quad t \in [0, 1].$$

Proposition (Degenerate distribution)

1. Algorithm of Chen et al.

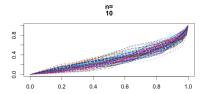
Under a uniform partition, in C([0,1]) with uniform topology: Y_n converges in probability to $\gamma(t) = t$; the process $\sqrt{n}(Y_n(t) - t)$ converges in distribution to a standard Brownian Bridge process.

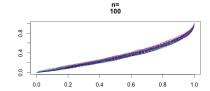
2. Generalised version

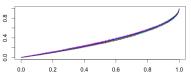
Under some conditions on F, Y_n converges in probability to $F^{-1}(t)$ in C[0,1] with uniform topology.

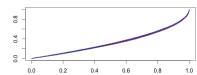
ション ふゆ く 山 マ チャット しょうくしゃ

Example with F as Beta(1,2)



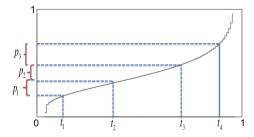






◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The algorithm can be salvaged ...

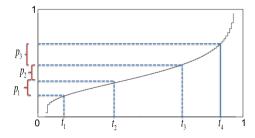


There are two main ingredients in the algorithm:

- Construction of partition $0 < t_1 < \cdots < t_n < 1$ of [0, 1];
- sampling of increments from a distribution on the unit simplex.

(□) (圖) (E) (E) (E)

The algorithm can be salvaged ...



There are two main ingredients in the algorithm:

- Construction of partition $0 < t_1 < \cdots < t_n < 1$ of [0, 1];
- sampling of increments from a distribution on the unit simplex.
 Choosing a random partition does the trick.

Modified algorithm with random partition

- 1. Choose $\theta > 0$;
- 2. discretize [0, 1] with order statistics $0 =: t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n := 1$ of a random sample from distribution function H on [0, 1];

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Modified algorithm with random partition

- 1. Choose $\theta > 0$;
- 2. discretize [0, 1] with order statistics $0 =: t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n := 1$ of a random sample from distribution function H on [0, 1];
- 3. sample an *n*-dimensional Dirichlet distributed random vector (p_1, \ldots, p_n) with parameters set to $\theta(t_{1:n} t_{0:n}, \ldots, t_{n:n} t_{n-1:n})$;

ション ふゆ アメリア メリア しょうくしゃ

Modified algorithm with random partition

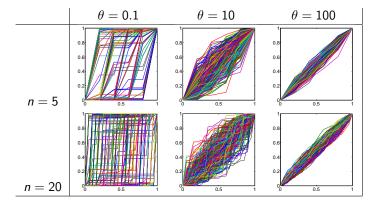
- 1. Choose $\theta > 0$;
- 2. discretize [0, 1] with order statistics $0 =: t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n := 1$ of a random sample from distribution function H on [0, 1];
- 3. sample an *n*-dimensional Dirichlet distributed random vector (p_1, \ldots, p_n) with parameters set to $\theta(t_{1:n} t_{0:n}, \ldots, t_{n:n} t_{n-1:n})$;

ション ふゆ く 山 マ チャット しょうくしゃ

4. construct a warp map on [0,1] by linear interpolation.

Example





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example

$\theta = 0.1$ $\theta = 10$ $\theta = 100$ 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 n = 50.5 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 *n* = 20 0 0.5 0.5 0.5

Samples of warps with partition based Beta (5,1) CDF as H

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Justification for modified algorithm

• Consider partition based on *H*.

► Independently, let (p₁,..., p_n) obtained as spacings of an i.i.d sequence x_i from a density f (not necessarily Dirichlet distributed).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Justification for modified algorithm

- Consider partition based on H.
- Independently, let (p₁,..., p_n) obtained as spacings of an i.i.d sequence x_i from a density f (not necessarily Dirichlet distributed).

• Let
$$\lambda(x) = \theta \int_x^\infty \frac{e^{-y}}{y} dy$$
 for $\theta > 0$.

► Set $v_1 = p_1$ and $v_i = p_1 + \dots + p_i$, $i = 2, \dots, n$ and consider the transformed random variables $z_{i,n} = \lambda^{-1}(nf(F^{-1}(\zeta_{i,n}))v_i)$ where $0 \le \zeta_{i,n} \le 1$ is a deterministic sequence such that $\max_{1 \le i \le n} |\frac{i}{n} - \zeta_{i,n}| = O(1/n)$.

ション ふゆ く 山 マ チャット しょうくしゃ

Process based on random partition

Theorem

Under some conditions on f, the linearly interpolated version of the process

$$G_n(t) := \sum_i \lambda^{-1}(z_{i,n}) \mathbb{I}_{t_i \leq t}, \quad t \in [0,1],$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

converges weakly to the time-changed pure jump Gamma process $\mathcal{G} \circ H$ in the Skorohod M_1 topology (J_1 topology is too strong).

Process based on random partition

Theorem

 Under some conditions on f, the linearly interpolated version of the process

$$G_n(t) := \sum_i \lambda^{-1}(z_{i,n}) \mathbb{I}_{t_i \leq t}, \quad t \in [0,1],$$

converges weakly to the time-changed pure jump Gamma process $\mathcal{G} \circ H$ in the Skorohod M_1 topology (J_1 topology is too strong).

► $D^{\theta} \circ H = \mathcal{G}(H(t))/\mathcal{G}(H(\theta))$ is referred to as the Dirichlet process with sample paths as warp maps of [0, 1] with

$$\mathbb{E}\mathcal{D}^{\theta}\circ H=H,\quad\forall\theta.$$

ション ふゆ く 山 マ チャット しょうくしゃ

Interpretation of $\mathbb{P}_{H,\theta}$, the law of $\mathcal{D}^{\theta} \circ H$

Conditioned on a partition $0 =: t_{0:n} < t_{1:n} < \cdots < t_{n-1:n} < t_{n:n} := 1$ from *H*,

$$\mathbb{P}_{H,\theta}(\gamma(t_{1:n}) \in dx_1, \dots, \gamma(t_{n-1:n}) \in dx_{n-1}) \\ = \frac{\Gamma(\theta)}{\prod_{i=1}^n \Gamma(\theta(t_{i:n} - t_{i-1:n}))} \prod_{i=1}^n (x_i - x_{i-1})^{(t_{i:n} - t_{i-1:n})} dx_1 \dots dx_{n-1}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

⁴ T. Ferguson (1973). Annals of Statistics. 209–230

Interpretation of $\mathbb{P}_{H,\theta}$, the law of $\mathcal{D}^{\theta} \circ H$

Conditioned on a partition $0 =: t_{0:n} < t_{1:n} < \cdots < t_{n-1:n} < t_{n:n} := 1$ from H,

$$\mathbb{P}_{H,\theta}(\gamma(t_{1:n}) \in dx_1, \dots, \gamma(t_{n-1:n}) \in dx_{n-1}) \\ = \frac{\Gamma(\theta)}{\prod_{i=1}^n \Gamma(\theta(t_{i:n} - t_{i-1:n}))} \prod_{i=1}^n (x_i - x_{i-1})^{(t_{i:n} - t_{i-1:n})} dx_1 \dots dx_{n-1}.$$

▶ P_{H,θ} is push-forward of the well-known Dirichlet process⁴ on P[0, 1], the set of prob measures on [0, 1], under the map that takes a probability measure to its quantile function.

ション ふゆ く 山 マ ふ し マ うくの

⁴ T. Ferguson (1973). Annals of Statistics. 209–230

Comments

▶ $\mathbb{P}_{H,\theta}$ can be centred at desired warp map: choice of *H* when constructing the random partition.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• θ acts like a variance parameter.

It has full support on set of warp maps Γ for every θ (several topologies coincide).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- It has full support on set of warp maps Γ for every θ (several topologies coincide).
- For every γ ∈ Γ, γ_#ℙ_{H,θ} is absolutely continuous w.r.t ℙ_{H,θ} (quasi-invariance under composition).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- It has full support on set of warp maps Γ for every θ (several topologies coincide).
- For every γ ∈ Γ, γ_#ℙ_{H,θ} is absolutely continuous w.r.t ℙ_{H,θ} (quasi-invariance under composition).
- ▶ When restricted to [a, b] and rescaled, the resulting distribution is $\mathbb{D}_{\theta(H(b)-H(a))}$ (Self-similarity).
- ▶ Independent of $\mathbb{D}_{H,\theta}$ on $[0,1] \setminus [a, b]$ except at a and b ('Markov').

ション ふゆ アメリア メリア しょうくしゃ

- It has full support on set of warp maps Γ for every θ (several topologies coincide).
- For every γ ∈ Γ, γ_#ℙ_{H,θ} is absolutely continuous w.r.t ℙ_{H,θ} (quasi-invariance under composition).
- When restricted to [a, b] and rescaled, the resulting distribution is D_{θ(H(b)−H(a))} (Self-similarity).
- ▶ Independent of $\mathbb{D}_{H,\theta}$ on $[0,1] \setminus [a, b]$ except at *a* and *b* ('Markov').

- ► As $\theta \to 0$, $\mathbb{D}_{H,\theta}$ converges to uniform distribution on the set $\{\mathbb{I}_{[H(t),1]} : 0 \le t \le 1\};$
- ▶ as $\theta \to \infty$, $\mathbb{D}_{H,\theta}$ converges to point mass at H(t).

Jumps correspond to large deformations of subsets of $\left[0,1\right]$. How large? How often do they occur?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Jumps correspond to large deformations of subsets of [0, 1]. How large? How often do they occur? Let $\xi_{i,n} := np_i - \log n$ be normalised increments.

Consider the process $Y_n(t) := \sum_{i=1}^{\lfloor nt \rfloor} [\xi_i - E(\xi_i \mathbb{I}_{\xi_i \leq 1})], \ 0 \leq t \leq 1.$

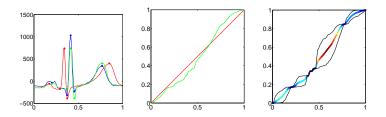
Theorem

The sequence Y_n converges weakly in the J_1 topology to a real-valued Levy jump process with Levy measure $\nu(dy) = e^{-y} dy$ in D[0, 1].

ション ふゆ アメリア メリア しょうくしゃ

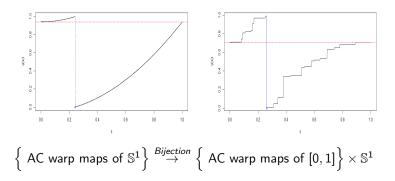
ECG Data: Bayesian model on Ambient/Top space

- Gaussian likelihood on q₁ q₂(γ)|γ, where q_i, i = 1, 2 are Square Root Velocity transform (SRV) of f_i, i = 1, 2.
- ▶ $\mathbb{D}_{H,\theta}$ prior on Γ with H(t) = t.



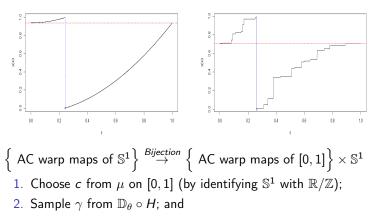
Green: Aligned function; estimated warp map. (Pointwise) Posterior credible intervals. (Blue: less uncertainty; Red: more uncertainty).

Sampling when $D = \mathbb{S}^1$ by unwrapping



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

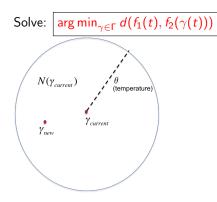
Sampling when $D = \mathbb{S}^1$ by unwrapping



・ロト ・ 戸 ・ ・ ヨ ・ ・

3. Set
$$\gamma_s(t) := (\gamma(t) + c) \mod 1$$
.

Simulated Annealing with $\mathbb{P}_{H,\theta}$



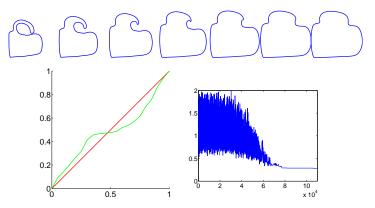
- Choose γ_{new} ∈ N(γ_{current}) by sampling P_{γ_{current},θ} centered at γ_{current};
- compute $\Delta = d(f_1(t), f_2(\gamma_{new}(t)));$
- ► if $\Delta \leq 0$, $\gamma_{current} \leftarrow \gamma_{new}$, else $\gamma_{current} \leftarrow \gamma_{new}$ with prob $e^{-\frac{\Delta}{\theta}}$;

(ロ) (型) (E) (E) (E) (O)

repeat.

Aligning shapes of closed curves in \mathbb{R}^2 : Simulated annealing

Geodesic path between leftmost and rightmost figures under SRVF.



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Summary

- Landmark constraints under curves impose constraints on warp maps.
- For alignment with landmarks P_{H,θ} is compatible with Focus invariance and Decomposability.
- These characterize $\mathbb{P}_{H,\theta}$.
- Algorithm is trivial to implement, and can generate maps from distribution centered at derived at any warp map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Details and more examples in paper: Partition-based sampling of warp maps for curve alignment. arXiv:1708.04891.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●