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This talk. . .

I Statistical models on function spaces for elastic functional data and
issues.

I Model-based pairwise registration of curves/functions.

I How to define and sample from distribution on warping functions of
[0, 1] and S1?

I One or two applications.



Where to define models for elastic functional data?

I Original data space

Functions: L2([0, 1],R);
Curves: AC (D,Rn), L2(D,Rn) where D ∈ {[0, 1],S1}.

I Ambient/Top/Pre-shape space

Functions: L2([0, 1],R) (or sometimes S∞);
Curves: S∞ (open) or its subset (closed).

I Quotient/Shape space

Functions: L2([0, 1],R)/Γ where Γ is group of warp maps of [0, 1];
Curves: S∞/(Γ× SO(n)) for open curves.
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Where to define models for elastic functional data?

Laws of stochastic processes are natural models:

I Original data space. Easy.
For e.g. Gaussian process on L2(D,Rn); diffusion bridges as
solutions of SDEs.

I Ambient/Top/Pre-shape space. Hard.
For e.g. Marginalization/projection of Gaussian measure on L2 to
get one on S∞ is not straightforward.

I Quotient/Shape space. Impossibly hard.
No invariant measure for infinite-dimensional warping group.

In principle, we can have p(data) =
∫
p(data|group)dp(group).
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Example: mean estimation with marginal models

Models for a random curve that are roughly of the form

X (t) = (µ(t), g(t)) “ + ” ε(t), g ∈ G

where:

I ε is a stochastic process (likelihood given g);
I (µ, g) is action of group element g on µ;
I µ is a deterministic mean/template;
I g is a stochastic process (random effect/prior on G )

Integrate out g over G .



Focus of this talk: Stochastic pairwise registration

Let Γ := {γ : D → D} be a class of warping functions.

Match fi : D → Rk , i = 1, 2 with:

I

argmin
γ∈Γ

d(f1, (f2, γ)),

with a distribution on Γ;

I or a posterior summary based on a Bayesian model:

likelihood on {f1(t)− (f2, γ)|γ} and prior distribution on Γ.
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Candidate classes of warping functions



Distributions on warping functions on [0, 1]

We wish to have a random function γ : [0, 1]→ [0, 1], increasing with
γ(0) = 0 and γ(1) = 1.

I No ’Haar’ measure on Γ—only those quasi-invariant with respect to
composition exist. 1.

I Pushforwards of equivalent Gaussian measures on L2 tangent spaces
of S∞ under Exponential maps under are mutually singular. 2.

I Subordinator processes (a.s. non-negative, non-decreasing Levy
process) are natural candidates (e.g. Gamma process).

I Define a map Φ : C0[0, 1]→ Diff1[0, 1] as

g(t) 7→ Φ(g(t)) :=

∫ t

0 eg(s)ds∫ 1
0 eg(s)ds

.

Choose g to be a Gaussian process for e.g.
Statistical issue: Not easy to centre these distributions at desired γ or
sample from.

1E. Shavgulidze. Trudy Math. Inst. Steklov., 217 (1997),189-208
2E. Bardelli and A. G. Menucci. Journal of Geometric Mechanics. 9 (2017), 291-316.
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A new variant of the curve/function registration problem is common and
motivates the class of warping functions.



Pairwise alignment with landmarks

0 1𝑡" 𝑡#

I If on f1 a landmark is present at t1 ∈ [0, 1] and correspondingly at t2
on f2, then there is a warping constraint: γ(t2) = t1.



Pairwise alignment with landmarks



Desiderata in a Pθ on Γ

Decompose global alignment
into multiple local ones:
Pθ restricted to γ|[t1,t2] is in-
dependent of Pθ restricted to
γ|[0,1]\[t1,t2] (Markov like)

Optimal local alignment ‘matches’
optimal global one a:
Pθ(t2−t1) (Self-similarity)

aFocus Invariance: A. Trouv́e and L. Younes. SIAM
Journal on Control and Optimization, 39:1112-1135, 2000
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Program

I Landmark constraints imply that diffeomorphism group for Γ is not
appropriate.

I Decomposability and Markov-like property point towards a process
with independent increments. (Levy)

I We first examine a simple sampling algorithm, and then pose the
question:
"Does there exists a distribution Pθ from which the warping
functions are being sampled from? Does it possess the desiderata?"
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(Remarkably simple) Sampling algorithm 3

1. Choose a (non-random) set of ordered points
0 =: t0 < t1 < t2 < · · · < tn−1 < tn := 1;

2. sample (p1, . . . , pn) from Dirichlet distribution with parameters
θ(1, . . . , 1);

3. construct a warp map on [0, 1] by linear interpolation.

3W. Cheng, I. L. Dryden and X. Huang. Bayesian Analysis, 11, 447-475, 2015



Sampling algorithm: A generalisation

1. Choose a (non-random) set of ordered points
0 =: t0 < t1 < t2 < · · · < tn−1 < tn := 1;

2. set pi = xi :n − xi−1:n, i = 1, . . . , n, where xi :n are order statistics from
F . (xi ∼ U[0, 1] implies (p1, . . . , pn) ∼ Dirichlet (1,. . . ,1));

3. construct a warp map on [0, 1] by linear interpolation.



‘Nice’ distribution as n→∞?

Consider the process

Yn(t) :=

bntc∑
i=1

pi + (nt − bntc)pbntc+1, t ∈ [0, 1].

Proposition (Degenerate distribution)

1. Algorithm of Chen et al.
Under a uniform partition, in C ([0, 1]) with uniform topology: Yn

converges in probability to γ(t) = t; the process
√
n(Yn(t)− t)

converges in distribution to a standard Brownian Bridge process.
2. Generalised version

Under some conditions on F , Yn converges in probability to F−1(t)
in C [0, 1] with uniform topology.
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Example with F as Beta(1,2)



The algorithm can be salvaged . . .

There are two main ingredients in the algorithm:
I Construction of partition 0 < t1 < · · · < tn < 1 of [0, 1];
I sampling of increments from a distribution on the unit simplex.

Choosing a random partition does the trick.
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Modified algorithm with random partition

1. Choose θ > 0;
2. discretize [0, 1] with order statistics

0 =: t0 < t1 < t2 < · · · < tn−1 < tn := 1 of a random sample from
distribution function H on [0, 1];

3. sample an n-dimensional Dirichlet distributed random vector
(p1, . . . , pn) with parameters set to θ (t1:n − t0:n, . . . , tn:n − tn−1:n);

4. construct a warp map on [0, 1] by linear interpolation.
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Example

Samples of warps with partition based on H(t) = t
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Example

Samples of warps with partition based Beta (5,1) CDF as H
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Justification for modified algorithm

I Consider partition based on H.

I Independently, let (p1, . . . , pn) obtained as spacings of an i.i.d
sequence xi from a density f (not necessarily Dirichlet distributed).

I Let λ(x) = θ
∫∞
x

e−y

y dy for θ > 0.

I Set v1 = p1 and vi = p1 + · · ·+ pi , i = 2, . . . , n and consider the
transformed random variables zi,n = λ−1(nf (F−1(ζi,n))vi ) where
0 ≤ ζi,n ≤ 1 is a deterministic sequence such that
max1≤i≤n | in − ζi,n| = O(1/n).



Justification for modified algorithm

I Consider partition based on H.

I Independently, let (p1, . . . , pn) obtained as spacings of an i.i.d
sequence xi from a density f (not necessarily Dirichlet distributed).

I Let λ(x) = θ
∫∞
x

e−y

y dy for θ > 0.

I Set v1 = p1 and vi = p1 + · · ·+ pi , i = 2, . . . , n and consider the
transformed random variables zi,n = λ−1(nf (F−1(ζi,n))vi ) where
0 ≤ ζi,n ≤ 1 is a deterministic sequence such that
max1≤i≤n | in − ζi,n| = O(1/n).



Process based on random partition

Theorem
I Under some conditions on f , the linearly interpolated version of the

process
Gn(t) :=

∑
i

λ−1(zi,n)Iti≤t , t ∈ [0, 1],

converges weakly to the time-changed pure jump Gamma process
G ◦ H in the Skorohod M1 topology (J1 topology is too strong).

I Dθ ◦ H = G(H(t))/G(H(θ)) is referred to as the Dirichlet process
with sample paths as warp maps of [0, 1] with

EDθ ◦ H = H, ∀θ.
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Interpretation of PH,θ, the law of Dθ ◦ H

Conditioned on a partition 0 =: t0:n < t1:n < · · · < tn−1:n < tn:n := 1
from H,

PH,θ(γ(t1:n) ∈ dx1, . . . , γ(tn−1:n) ∈ dxn−1)

=
Γ(θ)∏n

i=1 Γ(θ(ti :n − ti−1:n))

n∏
i=1

(xi − xi−1)(ti :n−ti−1:n)dx1 . . . dxn−1.

I PH,θ is push-forward of the well-known Dirichlet process4 on P[0, 1],
the set of prob measures on [0, 1], under the map that takes a
probability measure to its quantile function.

4 T. Ferguson (1973). Annals of Statistics. 209–230
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Comments

I PH,θ can be centred at desired warp map: choice of H when
constructing the random partition.

I θ acts like a variance parameter.



Some properties of PH,θ

I It has full support on set of warp maps Γ for every θ (several
topologies coincide).

I For every γ ∈ Γ, γ#PH,θ is absolutely continuous w.r.t PH,θ

(quasi-invariance under composition).
I When restricted to [a, b] and rescaled, the resulting distribution is

Dθ(H(b)−H(a)) (Self-similarity).
I Independent of DH,θ on [0, 1]\[a, b] except at a and b (‘Markov’).
I As θ → 0, DH,θ converges to uniform distribution on the set
{I[H(t),1] : 0 ≤ t ≤ 1};

I as θ →∞, DH,θ converges to point mass at H(t).
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I As θ → 0, DH,θ converges to uniform distribution on the set
{I[H(t),1] : 0 ≤ t ≤ 1};

I as θ →∞, DH,θ converges to point mass at H(t).
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PH,θ generates warps with jumps. . .

Jumps correspond to large deformations of subsets of [0, 1]. How large?
How often do they occur?

Let ξi,n := npi − log n be normalised
increments.

Consider the process Yn(t) :=
∑bntc

i=1 [ξi − E (ξi Iξi≤1)], 0 ≤ t ≤ 1.

Theorem
The sequence Yn converges weakly in the J1 topology to a real-valued
Levy jump process with Levy measure ν(dy) = e−ydy in D[0, 1].
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ECG Data: Bayesian model on Ambient/Top space

I Gaussian likelihood on q1 − q2(γ)|γ, where qi , i = 1, 2 are Square
Root Velocity transform (SRV) of fi , i = 1, 2.

I DH,θ prior on Γ with H(t) = t.
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Sampling when D = S1 by unwrapping

{
AC warp maps of S1

}
Bijection→

{
AC warp maps of [0, 1]

}
× S1

1. Choose c from µ on [0, 1] (by identifying S1 with R/Z);
2. Sample γ from Dθ ◦ H; and
3. Set γs(t) := (γ(t) + c) mod 1.
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Simulated Annealing with PH,θ

Solve: argminγ∈Γ d(f1(t), f2(γ(t)))

I Choose γnew ∈ N(γcurrent)
by sampling Pγcurrent ,θ
centered at γcurrent ;

I compute
∆ = d(f1(t), f2(γnew (t)));

I if ∆ ≤ 0, γcurrent ← γnew ,
else γcurrent ← γnew with
prob e−

∆
θ ;

I repeat.



Aligning shapes of closed curves in R2: Simulated annealing

Geodesic path between leftmost and rightmost figures under SRVF.
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Summary

I Landmark constraints under curves impose constraints on warp
maps.

I For alignment with landmarks PH,θ is compatible with Focus
invariance and Decomposability.

I These characterize PH,θ.
I Algorithm is trivial to implement, and can generate maps from

distribution centered at derived at any warp map.



Details and more examples in paper:
Partition-based sampling of warp maps for curve alignment.

arXiv:1708.04891.


