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Goals of this talk

Briefly review the SRVF (Square Root Velocity Function)
method of putting a metric on the space of absolutely
continuous curves in RN , in a way that is invariant under
reparametrization.

Discuss the dense subspace of this metric space consisting of
PL (Piecewise Linear) curves.

Demonstrate a method for computing precise geodesics
between PL curves in the shape space.
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Absolutely Continuous Functions
Bijection Between AC0(I ,RN ) and L2(I ,RN )
Reparametrization Group and monoid
Construction of the Quotient Space

Definition

A function f : I → RN is absolutely continuous (AC) if these two
conditions hold:

The derivative f ′ exists almost everywhere.

For all t ∈ I , f (t) = f (0) +
∫ t

0 f ′(u)du.

Note: The condition of absolute continuity is weaker than C 1, and
much weaker than smoothness! Example: piecewise smooth curves
are AC. Also, AC curves can be constant on subintervals of I .
Notation:

AC (I ,RN) := {absolutely continuous functions f : I → RN}

AC0(I ,RN) := {absolutely continuous f : I → RN : f (0) = 0}
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Bijection Between AC0(I ,RN) and L2(I ,RN):

Given f ∈ AC0(I ,RN), define qf ∈ L2(I ,RN) as follows:

qf (t) =


f ′(t)√
|f ′(t)|

if f ′(t) 6= 0

0 if f ′(t) = 0.

The mapping
AC0(I ,RN)→ L2(I ,RN)

given by
f 7→ qf

is easily verified to be a bijection. We often refer to qf as the
Square Root Velocity Function (SRVF) of f , or the q-function of f .
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Since L2(I ,RN) is a Hilbert space, it is a complete Riemannian
manifold. Thus our bijection gives AC0(I ,RN) the structure of a
complete Riemannian manifold. The geodesics in AC0(I ,RN)
correspond to straight lines in L2(I ,RN).

Remark 1:

Note that we are using this bijection to pull back all three
structures from L2 to AC0 : topological, differentiable and
Riemannian.

Remark 2:

This differential structure differs from the usual one on AC0 in any
neighborhood of a function f ∈ AC0(I ,RN) with the property that
f ′(t) = 0 on a set of measure > 0.
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Advantages of including absolutely continuous curves in our space
of curves (instead of just immersions):

1 We can now model a much larger variety of curves (for
example, piecewise smooth).

2 Our set of parametrized curves is now a complete metric
space.

3 Every pair of parametrized curves can now be joined by a
geodesic.
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Unit Length Curves

Define
S∞ = {f ∈ L2(I ,RN : 〈f , f 〉 = 1}

S∞ is the unit sphere in L2(I ,RN). Under our bijection,

{AC curves of length 1} ↔ unit sphere S∞

S∞ is a complete Riemannian manifold; geodesics in S∞ are great
circles. Thus, if we wish to mod out by the rescaling group, this is
easily accomplished by normalizing all curves to have length 1,
which means restricting our attention to the unit sphere S∞.

S. Lahiri, D. Robinson, E. Klassen, A. Srivastava Precise Matching of PL Curves in RN in the Square Root Velocity Framework Part II



Contents
Introduction

A Complete Metric Space of Curves Modulo Reparametrization
PL Curves: A Computationally Useful Subspace of S(I ,RN )

Combinatorial Algorithm for Matching Two PL Curves
Examples of optimal matchings between PL curves

Dan Robinson’s results on Sst (I , R)
Curves in a Riemannian Manifold

Absolutely Continuous Functions
Bijection Between AC0(I ,RN ) and L2(I ,RN )
Reparametrization Group and monoid
Construction of the Quotient Space

We wish to consider two parametrized curves as “equivalent” if
one is a reparametrization of the other; this is best understood by
the action of the following reparametrization group.

Definition

The group Γ of reparametrizations is defined to be the set of
functions γ : I → I satisfying

γ(0) = 0 and γ(1) = 1.

γ is absolutely continuous.

γ′(t) > 0 almost everywhere.

These conditions imply that each γ ∈ Γ is bijective and that its
inverse is also in Γ.

Note that Γ acts on AC0(I ,RN) from the right by composition.
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Definition

The monoid Γ̃ of singular reparametrizations is defined to be the
set of functions γ : I → I satisfying

γ(0) = 0 and γ(1) = 1.

γ is absolutely continuous.

γ′(t) ≥ 0 almost everywhere.

Because a function γ ∈ Γ̃ can be constant on subintervals of I , it
will not in general have an inverse. Thus, Γ̃ is only a monoid.

The monoid Γ̃ also acts on AC0(I ,RN) from the right by
composition. Clearly,

Γ ⊂ Γ̃.
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Corresponding Actions of Γ and Γ̃ on L2(I ,RN)

Since Γ and Γ̃ act on AC0(I ,RN), and we have a bijection between
AC0(I ,RN) and L2(I ,RN), it follows that there is an induced
action on L2(I ,RN). We denote that action by q ∗ γ, where
q ∈ L2(I ,RN) and γ ∈ Γ̃ (or Γ); its formula is given as follows:

(q ∗ γ)(t) =
√
γ′(t)q(γ(t)).

The actions of Γ̃ on AC0(I ,RN) and on L2(I ,RN) are related as
follows:

q(f ◦γ) = (qf ) ∗ γ

for all f ∈ AC0(I ,RN) and all γ ∈ Γ̃.
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Theorem

The elements of Γ̃ (and of Γ) act on the Hilbert space L2(I ,RN) as
linear isometries, i.e., they preserve the Hilbert space structure. In
symbols: 〈q,w〉 = 〈q ∗ γ,w ∗ γ〉 for all q,w ∈ L2(I ,RN) and for all
γ ∈ Γ̃. Note: elements of Γ̃− Γ act injectively, not bijectively.

This theorem is proved using integration by substitution. This is
one important reason for our choice of reparametrization functions:
absolutely continuous reparametrizations are precisely the functions
for which integration by substitution is valid.

We have replaced the action of the reparametrization group (and
monoid) on the space of curves, by an action by isometries on a
complete metric space (in fact a Hilbert space).
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Modding Out by Reparametrizations

Our primary goal is to make sense of the quotient of L2(I ,RN) by
the action of the group Γ, and to view this quotient as a metric
space in its own right. Let qΓ denote the orbit of q under Γ.

Natural attempt to put a metric on L2(I ,RN)/Γ

If q,w ∈ L2(I ,RN), define d(qΓ,wΓ) = inf
q̃∈qΓ,w̃∈wΓ

d(q̃, w̃).

Problem

The orbits qΓ are not closed; hence there exist distinct orbits
between which the infimum in the above formula is zero.
Therefore, L2(I ,RN)/Γ is not a metric space with respect to d .
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Formal Solution

Define an equivalence relation ∼ on L2(I ,RN) by

q ∼ w ⇔ w ∈ Cl(qΓ)

where CL(qΓ) denotes the L2-closure of qΓ. The quotient space
(L2(I ,RN)/ ∼) will then inherit a metric from L2(I ,RN). Let
[q] = Cl(qΓ) denote the equivalence class of q under ∼.
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Structure of the closed-up orbit [q]

Theorem

For every q ∈ L2(I ,RN), [q] = w Γ̃, where w is the SRVF of the
constant speed parametrization of the curve corresponding to q.

The theorem can be restated as: Two parametrized curves are
equivalent if and only if both of them have the same constant
speed parametrization.

Definition

Define the shape space by S(I ,RN) = L2(I ,RN)/ ∼.

Note: S(I ,RN) is a complete metric space, but not a manifold.
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Definition

An optimal matching of a pair q1, q2 ∈ L2(I ,RN) is a pair
w1 ∈ [q1] and w2 ∈ [q2] such that d(w1,w2) = d([q1], [q2]).

Fundamental Question about S(I ,RN):

Given [q1] and [q2] in S(I ,RN), under what circumstances does
there exist an optimal matching between q1 and q2? Note:
Whenever such an optimal matching exists, there also exists a
geodesic (in the metric space sense) joining [q1] and [q2] in the
shape space S(I ,RN).
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M. Bruveris1 has some nice recent results on this question. He has
shown that if the two curves are both C 1, then an optimal
matching exists. He has also produced a pair of very “badly
behaved” AC curves for which no optimal matching exists.

S. Lahiri et al.2 have taken a different approach, in which one or
both curves is piecewise linear. If at least one of them is PL, this
paper proves that an optimal matching exists. If both are PL, they
prove that the optimal matching exists and is PL and provide an
algorithm for the precise computation of this matching.

1M. Bruveris, Optimal reparametrizations in the square root velocity
framework, SIAM J. Math. Anal., 2016.

2S. Lahiri, D. Robinson, E. Klassen, Precise matching of PL curves in RN in
the square root velocity framework, Geometry, Imaging and Computing, 2015.
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We will now describe the algorithm of Lahiri et al. During the
development of this algorithm, Lahiri implemented it in matlab and
used her code to produce examples for the paper, but never made
the code itself public. We have been informed that M. Bruveris
and A. Salili have written code for the same algorithm, and made
it available on github.

Definition

A function q ∈ L2(I ,RN) is a step function if there is a finite
partition 0 = s0 < t1 < t2 < · · · < sn = 1 of I such that q is
constant on each open interval (qi−1, qi ).
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A Computationally Useful Subspace of S(I ,RN)

Observation: f ∈ AC0(I ,RN) is PL ⇔ qf ∈ L2(I ,RN) is a step
function.

Definition

Sst(I ,RN) := {[q] ∈ S(I ,RN) : [q] contains a step function}

Thus, Sst(I ,RN) is the subset of S(I ,RN) corresponding to curves
that admit PL parametrizations.

Theorem

Sst(I ,RN) is dense in S(I ,RN).

Proof: Elementary measure theory.
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Theorem

Given [q], [w ] ∈ S(I ,RN):

1 if at least one of them is in Sst(I ,RN), then an optimal
matching exists;

2 if both of them are in Sst(I ,RN), then this optimal matching
can be taken to consist of step functions and the geodesic
between them lies entirely in Sst(I ,RN);

3 there is a finite combinatorial algorithm that computes this
optimal matching and the corresponding geodesic.
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For N = 1, a simpler version of this algorithm had been discovered
earlier by D. Robinson and implemented in his 2012 PhD
dissertation at FSU. A few years later it was published3 in 2017.
For N ≥ 1, it was implemented and published by S. Lahiri, in a
paper already cited. The N ≥ 1 version is more intricate and
slower computationally.

More recently, M. Bruveris and A. Salili have implemented this
algorithm for N ≥ 1 and made it publicly available on github.

3Robinson, Duncan, Srivastava, Kassen, Exact Function Alignment Under
Elastic Riemannian Metric, in Graphs in Biomedical Image Analysis,
Computational Anatomy and Imaging Genetics, Lecture Notes in Computer
Science, vol 10551, Springer, 2017
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Idea of proof of (1) for general case N ≥ 1

Case 1: Suppose w(t) ≡ w0 is a constant map; this is equivalent
to assuming that one of the two curves in a straight line. Then we
can write an explicit formula for a reparametrization γ that
maximizes 〈q,w ∗ γ〉. The proof of maximality is elementary, using
only the Cauchy-Schwarz inequality.

Case 2: Suppose w is a step function. Then once we decide which
parameter value of q to match to each change-point of w , Case 1
determines the optimal reparametrization of each linear piece of w .
But the space of all of these choices is the compact finite
dimensional simplex 0 = s0 ≤ s1 ≤ · · · ≤ sn = 1. Since the distance
function is continuous, a minimum distance must be achieved.
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Setup for Precise Matching of PL Curves in RN

Given:

Let f1 and f2 be continuous PL curves in RN ; let q1 and q2 be
their SRVFs (which will be step functions).

Goal:

Find reparametrizations γ1, γ2 ∈ Γ̃ which minimize
d(q1 ∗ γ1, q2 ∗ γ2). Because Γ̃ acts by isometries, this is the same
as maximizing 〈q1 ∗ γ1, q2 ∗ γ2〉.

Then (q1 ∗ γ1, q2 ∗ γ2) will be an optimal matching of (q1, q2), and
the straight line between q1 ∗ γ1 and q2 ∗ γ2 in L2(I ,Rn) will yield
a geodesic in S(I ,RN) between [q1] and [q2].
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Description of Algorithm

Choose partitions:

0 = s0 < s1 < · · · < sm = 1 and 0 = t0 < t1 < · · · < tn = 1

so that

f1 is linear on each [si−1, si ]; (hence q1 is constant on each
(si−1, si ))

f2 is linear on each [tj−1, tj ]; (hence q2 is constant on each
(tj−1, tj))

For each i and j , define ui = q1(si−1, si ) and vj = q2(tj−1, tj)
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For each i , j , let Wij = ui · vj . We call {Wij} the weight matrix of
q1 and q2. We subdivide the square I × I into rectangular blocks
Gij = [si−1, si ]× [tj−1, tj ]. We assign to each block Gij the real
weight Wij .
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Our optimal matching γ = (γ1, γ2) is a parametrized path in I × I ,
from (0, 0) to (1, 1). Because γ1 and γ2 are weakly increasing, the
direction of this path must always be towards the upper right –
i.e., its slope must always be an element of [0,∞].

Our matching algorithm for a pair of PL curves is based on the
following theorem that we have proved, concerning certain laws
that an optimal γ must obey as it passes through the various
blocks Gij .
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Theorem

An optimal matching γ between two PL curves can be
parametrized so that:

1 it is PL;

2 it consists of a sequence of P-segments and N-segments, with
no two consecutive N-segments;

3 it satisfies certain inequalities relating the final slope of a
P-segment to the initial slope of the next P-segment.
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Definition

A P-segment

starts at a vertex, ends at a vertex, and passes through no
other vertices;

is linear as it passes through any single block.

The initial and final blocks that it passes through must have
positive weights, and the slope of γ in the initial and final
blocks must lie in (0,∞), i.e., cannot be vertical or horizontal.

It is either vertical or horizontal whenever it passes through a
block with weight ≤ 0.

When γ passes through an edge from one block to another,
the change in slope is determined by the weights of the two
blocks involved.
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As a result of the last clause of this definition, a P-segment is
determined by its slope as it passes through its initial block.

Example of a P-segment:
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Slope Change Rule for passing though a Vertical Edge

Assume Wi ,j and Wi+1,j are both positive. Suppose a P-segment
passes through a vertical edge from Gi ,j to Gi+1,j . Let Hi ,j and
Hi+1,j denote the slopes of the P-segment in these blocks. Then
the required relation is:

Hi+1,j =

(
Wi+1,j

Wi ,j

)2

Hi ,j
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Slope Change Rule for passing though a Horizontal Edge

Assume Wi ,j and Wi ,j+1 are both positive. Suppose a P-segment
passes through a horizontal edge from Gi ,j to Gi ,j+1. Let Hi ,j and
Hi ,j+1 denote the slopes of the P-segment in these blocks. Then
the required relation is:
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Definition

An N-segment

starts at a vertex and ends at a vertex;

has the property that the rectangle spanned by the beginning
and ending vertices contains only blocks with weights ≤ 0;
also some of the adjoining blocks must have this property;

consists entirely of horizontal and vertical segments.
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Examples of three N-segments from (s1, t2) to (s4, t6):
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Relation between final slope of a P-segment, and initial slope of
the next P-segment: Let Hi ,j > 0 be the final slope of a
P-segment, and Hi+1,j+1 > 0 be the initial slope of the next
P-segment. Then we must have the following relationship:

Hi+1,j+1 = µHi ,j

where

µ ∈
[
D2

AB
,
AB

C 2

]
.

A, B, C , and D denote the weights of the relevant blocks as
shown in the following diagram.
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The formula given is for the case in which the weights A, B, C ,
and D are all positive. If C and/or D is not positive, then the
bounds in the µ-interval will be replaced by 0 and/or ∞. If this
interval is empty, then no optimal matching can pass through this
vertex! This µ-interval is important computationally, because it
reduces the number of P-segments we must search over for each
vertex. In fact, the greater the number the sample points, the
narrower this interval tends to become.
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Algorithm for Producing Optimal Matching Between PL Curves:
Our algorithm is formally similar to Dynamic Programming. We
examine each vertex (si , tj) in the grid, starting with (0, 0) and
proceeding left to right along each row, covering all the rows from
bottom to top. By the time we arrive at a vertex, we have
determined the best allowable path from (0, 0) to that vertex, so
we then examine all allowable P-segments or N-segments beginning
at the new vertex, keeping track of where each one ends and of the
contribution of the new segment. In this manner, by the time we
reach the final vertex (1, 1), we have determined the optimal path
from (0, 0) to (1, 1). What makes this algorithm possible is that
minimizing the distance d(q1 ∗ γ1, q2 ∗ γ2) is equivalent to
maximizing the inner product 〈q1 ∗ γ1, q2 ∗ γ2〉, which is simply an
integral along the parameter space and, hence, is additive along
the segments of the path.
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Interesting Fact: If the optimal matching between a pair of curves
includes at least one N-segment, then there are infinitely many
non-equivalent optimal matchings, obtained by substituting any
other N-segment (composed entirely of vertical and horizontal
segments) between the same two vertices. As a result, there are
infinitely many geodesics between these two curves in the shape
space! This is analogous to the fact that two antipodal points on a
sphere can be joined by an infinite number of geodesics.
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Examples of Optimal Matchings between functions I → R1: In
each 1-dimensional example, we show the graphs of the unaligned
functions on the left, the optimally aligned functions on the right,
and we show the optimal matching γ = (γ1, γ2) below.

Figure: Example 1(1D). Distance before alignment is 1.4815. Distance
after alignment is 0.5071.
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Another 1-Dimensional Example:

Figure: Example 2(1D). Distance before alignment is 1.4312. Distance
after alignment is 0.1195.
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2-Dimensional Examples: On the left, we show the optimal
matching between the curves; on the right, the shortest geodesic
between the curves, and below, we show the matching function
γ = (γ1, γ2).

Figure: Example 3(2D). Distance before alignment is 7.0108. Distance
after alignment is 4.0721.
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Another 2D Example:

Figure: Example 4(2D). Distance before alignment is 3.9107. Distance
after alignment is 2.8418.
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Another 2D Example: (semi-circles traversed in opposite
directions; includes an N-segment)

Figure: Example 5(2D). Distance before alignment is 2.5064. Distance
after alignment is 2.0683.
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Another 2D Example:

Figure: Example 6(2D). Distance before alignment is 2.4495. Distance
after alignment is 2.
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Dan Robinson’s results on Sst(I ,R)

Given f ∈ AC0(I ,R) with unit arclength,

[qf ] ∈ Sst(I ,R)
m

There is a finite partition I = [0, t1] ∪ [t1, t2] ∪ . . . [tn−1, 1]
such that on each [ti−1, ti ], f is weakly monotonic.

Robinson has constructed and implemented a combinatorial
algorithm that performs the following: Given f , g ∈ AC0(I ,R) with
unit arclength, and assuming both [qf ], [qg ] ∈ Sst(I ,R), his
algorithm precisely determines a pair q̃f ∈ [qf ] and q̃g ∈ [qg ] such
that d(q̃f , q̃g ) = d([qf ], [qg ]).
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Stated informally, Dan’s algorithm determines the precise matching
between the domain of f and the domain of g that minimizes the
distance between their SRVF ’s. It should be noted that “usually”
both q̃f and q̃g involve reparametrizations by elements of Γ̃, not
just Γ.

The next frame contains the simplest non-trivial example of
functional alignment using the SRVF method. We give two
functions f (t) and g(t), and then their optimally aligned versions.
(In this case we only need to alter f , not g .) Note that we
reparametrize f to give it a stationary point during the parameter
interval in which g is going the “opposite direction.”

S. Lahiri, D. Robinson, E. Klassen, A. Srivastava Precise Matching of PL Curves in RN in the Square Root Velocity Framework Part II



Contents
Introduction

A Complete Metric Space of Curves Modulo Reparametrization
PL Curves: A Computationally Useful Subspace of S(I ,RN )

Combinatorial Algorithm for Matching Two PL Curves
Examples of optimal matchings between PL curves

Dan Robinson’s results on Sst (I , R)
Curves in a Riemannian Manifold

S. Lahiri, D. Robinson, E. Klassen, A. Srivastava Precise Matching of PL Curves in RN in the Square Root Velocity Framework Part II



Contents
Introduction

A Complete Metric Space of Curves Modulo Reparametrization
PL Curves: A Computationally Useful Subspace of S(I ,RN )

Combinatorial Algorithm for Matching Two PL Curves
Examples of optimal matchings between PL curves

Dan Robinson’s results on Sst (I , R)
Curves in a Riemannian Manifold

The following more complicated example gives a better
demonstration of Robinson’s method. In it, we give

two random functions f1 and f2;

PL functions f̃1 ∈ [f1] and f̃2 ∈ [f2] that minimize d(qf̃1 , qf̃2);

the geodesic between f̃1 and f̃2;

a reparametrization of this geodesic that approximates the
original f1. (It is impossible to make it match exactly, since the
relevant reparametrizations are in Γ̃, hence are not invertible.)

It is a characteristic of these optimal matchings that a decreasing
portion of one function is never matched against an increasing
portion of the other.
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Example 1

Original functions Matched PLFs
L2 product of SRVFs: 0.92387
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Geodesic between PLFs Geodesic from original f1
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Multiple alignment of functions: Berkeley Growth Rate
Curves

Figure: Original growth rate curves.
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Figure: PL parametrization of Karcher mean.

S. Lahiri, D. Robinson, E. Klassen, A. Srivastava Precise Matching of PL Curves in RN in the Square Root Velocity Framework Part II



Contents
Introduction

A Complete Metric Space of Curves Modulo Reparametrization
PL Curves: A Computationally Useful Subspace of S(I ,RN )

Combinatorial Algorithm for Matching Two PL Curves
Examples of optimal matchings between PL curves

Dan Robinson’s results on Sst (I , R)
Curves in a Riemannian Manifold

Figure: PL reparametrizations of original functions optimally aligned to
match mean.
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Figure: Aligned functions reparametrized by inverse of average of the
reparametrizations.
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Comments on the geometry of Sst(I ,R)

Sst(I ,R) is dense in S(I ,R).

Sst(I ,R) has the structure of a ‘CW complex’, with two cells
in each dimension (but not weak topology).

For each n, the n-skeleton of Sst(I ,R) is homotopy equivalent
to Sn.

Given each [q], [w ] ∈ Sst(I ,R), there exist a finite number of
geodesics between them, and Robinson’s algorithm determines
all of them combinatorially.

Sst(I ,R) is a very interesting metric space!
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A pair of points in Sst(I ,R) that can be joined by two
different shortest geodesics

Figure: Two pairs of reparametrizations of f and g that each give rise to
a geodesic in Sst(I ,R).
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