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Problem Motivation

Mitochondria contours – study of shapes.

Leaves



Problem Motivation

Nanoparticles:

Proteins, RNAs – Structure Analysis



Objects of Interest

Assume all the objects have the same topology, as described
below.

Euclidean Curves: They are all maps of the type: f : D → Rk ,
where D is a one-dimensional compact space. Examples:

D = [0, 1]: f can be open or closed curve
D = S1: f is called a closed curve

Curves on Manifolds: They are all maps of the type: f : D → M,
where D is a one-dimensional compact space. Examples:

D = [0, 1]: f is called an open curve
D = S1: f is called a closed curve

Often call them trajectories on manifolds.
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Specific Goals in Shape Analysis

Shape Analysis: A set of theoretical and computational tools that can provide:

Shape Metric: Quantify differences in any two given shapes.

How different are these shapes?
⇐⇒

Registration: Given any two objects find a mapping that assigns each
point on an object to a unique point on another object

Shape Deformation/Geodesic: How to optimally deform one shape into
another.



Shape Analysis
Shape summary: Compute sample mean, sample covariance, PCA, and
principal modes of shape variability.

Shape model and testing: Develop statistical models and perform
hypothesis testing.

Related tools: ANOVA, two-sample test, k -sample test, etc.

Clustering and Classification: Unsupervised and supervised
classification of shapes.

Shape Regression:



Shape Analysis

Much older and richer area, with ideas from many perspectives.
Generally interested in quantifying differences in shapes of
objects.
Kendall: Shape is a property left after removing shape
preserving transformations.
Historically statistical shape analysis is restricted to discrete
data; each object is represented by a set of points or landmarks.
Current interest lies in considering continuous objects (examples
later). This includes curves and surfaces. These representations
can be viewed as functions.
Functions have shapes and shapes are represented by
functions. FDA and shape analysis are quite similar in
challenges and solutions.



On Growth and Form
D’Arcy Thompson – 1905

Figure: The top example studies variations in shapes of crocodilian skulls,
while the bottom example compares the shape of an Argyropelecus olfersi
with that of a Sternoptyx diaphana. (Data courtesy of Wikipedia Commons.)



Shape Representations

Curves Ordered Samples Point Cloud Deformable Grid

Binary Image Medial Axis Signed-Distance Level Set



Unlabeled Point Sets
Iterated Closest Point (ICP):

RMSD = min
O∈SO(2),ρ∈R+,T∈R2,ς∈Σ

k∑
i=1

‖(T + ρOxi )− yς(i)‖2 .

Translation: T ∗ = 1
k

∑k
i=1 yς(i) − 1

k

∑k
i=1 xi .

Rotation: Compute A =
∑k

i=1 yς(i)xT
i and set

O∗ =


UV T if det(A) > 0

U

[
1 0
0 −1

]
V T otherwise.

Scale: ρ∗ =
∑k

i=1〈yς(i),xi,t〉∑k
i=1〈xi,t ,xi,t〉 .

Registration: Nearest neighbor, assignment problem, etc:

ς∗ = argmin
ς∈Σ

k∑
i=1

‖yς(i) − xi,t‖2 ,



ICP Examples
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Figure: Examples of matching point clouds using ICP algorithm.



ICP Examples

y x Registration (Hungarian) Registration (NN)

Figure: Different optimal registrations of two points sets using the nearest
neighbor (NN) algorithm and the Hungarian algorithm



Active Shape Models

Consider the set of n landmarks on an object as an n × 2 matrix.
Center the configuration by subtracting the mean.
Rescale each configuration by dividing by its norm.
Perform rotational alignment and compute straight line
geodesics.

Figure: Examples of geodesic paths between same shapes using ASM.



Kendall’s shape analysis

Same thing except respect the geometry of the underlying space.

Figure: Examples of geodesic paths between same shapes using ASM.



Signed-Distance Function

Signed-Distance functions

Difficult to find a geodesic path in the space of signed distance
functions.
Difficult to be invariance to rotation.
Registration is pre-determined.
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Registration Problem

β1 (arc-length) β2 (arc-length) β2 (matching)

Figure: Registration of points across two curves using the arc-length and a
convenient non-uniform sampling. Non-uniform sampling allows a better
matching of features between β1 and β2.



Elastic Shape Analysis

Elastic Shape Analysis

Perform registration and shape comparison (analysis) simultaneously.



Mathematical Representations of Curves

Parametrized curves – f : [0,1]→ R2, S1 → R2.

Let Γ be the set of all diffeomorphisms of [0,1] that preserve the
boundaries. Elements γ ∈ Γ, plays the role of a
re-parameterization function.
For any curve f : [0,1]→ R2, and γ ∈ Γ, the composition f ◦ γ is a
re-parameterization of f .
Γ is a group (with composition as group operation), and
f 7→ (f , γ) = f ◦ γ defines a group action on the space of curves.



Example: Re-Parameterization

Example: γa(t) = t + at(1− t), −1 < a < 1.

0 2 4 6
0

1

2

3

4

5

6

0 2 4 6
0

1

2

3

4

5

6

0 2 4 6
0

1

2

3

4

5

6

a = −0.5 a = 0 a = 0.5
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Shape-Preserving Transformations

Following group actions are shape preserving:

Translation: For any x ∈ R2, the f (t) 7→ x + f (t) denotes a
translation of f .
Rotation: For any O ∈ SO(2), the f (t) 7→ Of (t) denotes a rotation
of f .
Scaling: For any a ∈ R+, the f (t) 7→ af (t) denotes the translation
of f .
Re-parameterization: For any γ ∈ Γ, f (t) 7→ f (γ(t)) is a
re-paramaterization of f .

We want shape metrics and shape analysis to be invariant to these
actions. For instance, if ds is a shape metric, then we want:

ds(f1, f2) = ds(aO(f1 ◦ γ) + x , f2), ∀a ∈ R+,O ∈ SO(2), γ ∈ Γ, x ∈ R2

These transformations are considered nuisance in shape analysis.



Registration Through Re-Parametrizations

Re-parameterization is not entirely a nuisance transformation. It is
useful in solving the registration problem.

Take two parameterized curves f1, f2 : [0,1]→ R2.
For any t , the point f1(t) on the first curve is said to be registered
to the point f2(t) on the second curve.
We can change the registration by re-parametrizing the curves.
If we re-parameterize f2 by γ, then the new registration is
f1(t)↔ f2(γ(t)).



Metrics for Registration/Shape Comparsions

We need an objective function to define optimality of registration.
The L2 norm seems like a natural choice but it suffers from the
pinching effect.

inf
γ∈Γ
‖f1 − f2 ◦ γ‖

As earlier, the main problem is ‖f‖ 6= ‖f ◦ γ‖, in general.
We need a metric that satisfies:

d(f1, f2) = d(f1 ◦ γ1, f2 ◦ γ2), ∀γ1, γ2 ∈ Γ .

We will define an elastic shape metric (start with a Riemannian
metric and then derive distance under that metric) that satisfies
this property.
This metric will be too complex to use directly, so we will simplify
it using a square-root transformation.
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Elastic Riemannian Metric

Let f : [0,1]→ Rn be a Euclidean curve. ḟ (t) is the velocity vector
at f (t).

r(t) = |ḟ (t)| is the speed function, and
Θ(t) = ḟ (t)

r(t) is the direction vector.

We represent a curve by the pair (r ,Θ).
For a re-parameterized curve f ◦ γ, the representation is given by
((r ◦ γ)γ̇,Θ ◦ γ).
Elastic Riemannian Metric for curves: for any a,b,

〈(δr1, δΘ1), (δr2, δΘ2)〉(r,Θ) = a2
∫ 1

0
δr1(t)δr2(t)

1
r(t)

dt

+ b2
∫ 1

0
δΘ1(t)δΘ2(t)r(t) dt .

This metric is invariant to re-parameterization of f :

〈(δ((r1 ◦ γ)γ̇), δ(Θ1 ◦ γ)), (δ((r2 ◦ γ)γ̇), δ(Θ2 ◦ γ))〉(((r◦γ)γ̇),(Θ◦γ))

= 〈(δr1, δΘ1), (δr2, δΘ2)〉(r,Θ)



SRVF Representation for Curves

Define the square-root velocity function (SRVF):
q(t) ≡ ḟ (t)√

|ḟ (t)|
=
√

r(t)Θ(t).

Computing variation on both sides, we get:

δq =
1

2
√

r(t)
δr(t)Θ(t) +

√
r(t)δΘ(t) .

Taking standard L2 inner product between two such variations:

〈δq1, δq2〉 =
1
4

∫ 1

0
δr1(t)δr2(t)

1
r(t)

dt +

∫ 1

0
〈δΘ1(t), δΘ2(t)〉 r(t)dt .

Use 〈Θ(t), δΘi (t)〉 = 0.
This is equal to the elastic Riemannian metric for a = 1/2 and
b = 1. Thus, the mapping f 7→ q transforms the elastic
Riemannian metric into the L2 metric for these weights.
The geodesic distance between any f1 and f2 under the elastic
Riemannian metric (for a = 1/2 and b = 1) is simply ‖q1 − q2‖.



SRVF Representation ....
We use SRVF q for analyzing shape of a curve f .
The SRVF of (f ◦ γ) is (q ◦ γ)

√
γ̇. Just by chain rule. We will

denote (q, γ) = (q ◦ γ)
√
γ̇.

Commutative Diagram:

f q

(f ◦ γ) (q, γ)

SRVF

Group action by Γ

SRVF

Different Group action by Γ

Lemma: The chosen distance satisfies:
dFR(f1, f2) = dFR(f1 ◦ γ, f2 ◦ γ)
We need to show that ‖(q1 ◦ γ)

√
γ̇ − (q2 ◦ γ)

√
γ̇‖ = ‖q1 − q2‖.

‖(q1, γ) − (q2, γ)‖2 =

∫ 1

0
(q1(γ(t))

√
γ̇(t) − q2(γ(t))

√
γ̇(t))2dt

=

∫ 1

0
(q1(γ(t)) − q2(γ(t)))2

γ̇(t)dt = ‖q1 − q2‖
2
.�



Shape Analysis Using SRVFs

Checking all nuisance transformations:

1 Translation: SRVF q for a curve f is invariant to its translation !
2 Scaling: We can rescale all the curves to be of unit length, to get rid

of the scale variability. It turns out that ‖q‖ = L[f ]. So, if L[f ] = 1,
then the corresponding SRVF q is an element of a unit sphere S∞.

3 Re-parameterization and rotations we can’t remove by any such
standardization. However, we have the nice property:

‖q1 − q2‖ = ‖Oq1 −Oq2‖ = ‖(q1, γ)− (q2, γ)‖ .

We use the notion of equivalence classes, or orbits, to reconcile the
remaining two transformation. For any curve f , and its SRVF q, we its
equivalence class to be:

[q] = {O(q, γ)|O ∈ SO(n), γ ∈ Γ} .

This set represents SRVFS of all possible rotations and
re-parameterizations of f . Each equivalence class represents a shape.



Shape Metric

S∞ ⊂ L2 is called the pre-shape space.
The set of all equivalence classes is a quotient space
L2/(SO(n)× Γ). It is called the shape space.
The distance between any two curves in the pre-shape space is
cos−1(〈q1,q2〉).
The distance in the shape space, called the shape metric, is
given by:

ds([q1], [q2]) = inf
(O,γ)∈SO(n)×Γ

cos−1(〈q1,O(q2, γ)〉) .

This include rotational alignment and non-rigid registration of the
two curves.
Given optimal parameters O∗, γ∗, the shortest path or a
geodesics is simply:

α(τ) =
1

sin(ϑ)
(sin(ϑ(1− t))q1 + sin(ϑt)q∗2 ), cos(ϑ) = 〈q1,q∗2 〉 ,

where q∗2 = O∗(q2, γ
∗).



Shape Metric

So far we have developed a technique for computing geodesics
and geodesic distances in shape space of curves.
Suppose we are interested in only closed curves.
The SRVF q of a closed curve f satisfies an additional condition:

f (0) = f (1)⇔
∫ 1

0
q(t)|q(t)|dt = 0 .

So we are now interested in the pre-shape space:

C = {q ∈ S∞|
∫ 1

0
q(t)|q(t)|dt = 0} ⊂ S∞ .

The geodesics here are no longer arcs on great circles. We don’t
know have analytical expressions for these geodesics or
geodesic distances.
We have developed a numerical technique called path
straightening for finding geodesics on C.
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Path Straightening Method: Theoretical Background

The goal is to find a (locally) shortest path between two points p
and q on a Riemannian manifold M.

α̂ = arg inf
α:[0,1]→M,α(0)=p,α(1)=q

∫ 1

0

√
〈α̇(t), α̇(t)〉α(t)dt

= arg inf
α:[0,1]→M,α(0)=p,α(1)=q

∫ 1

0
〈α̇(t), α̇(t)〉α(t) dt

Define E [α] =
∫ 1

0 〈α̇(t), α̇(t)〉α(t) dt .

The set of all paths is:

A = {α : [0,1]→ M| α is differentiable and α̇ ∈ L2([0,1],M)} ,

The subset of paths with desired boundary conditions:

A0 = {α ∈ A|α(0) = p1 and α(1) = p2} .



Path Straightening Method: Theoretical Background

The tangent spaces to these sets of paths:

Tα(A) = {w : [0,1]→ TM| Dw
dτ
∈ L2 and ∀τ ∈ [0,1],w(τ) ∈ Tα(τ)(M)} ,

where Tα(τ)(M) is the tangent space of M at the point α(τ) ∈ M
Each element of Tα(A) is a (tangent) vector field along α.
For the set A0, the tangent space is

Tα(A0) = {w ∈ Tα(A)|w(0) = w(1) = 0} .

This is a set of vector fields along α that are zero at the
boundaries.
The optimization problem is:

α̂ = arg inf
α∈A0

∫ 1

0
〈α̇(t), α̇(t)〉dt



Gradient of Energy E

Theorem

Let α : [0,1]→ M be a path such that α(0) = p1 and α(1) = p2, i.e.
α ∈ A0. Then, with respect to the Palais metric:

1 The gradient of the energy function E on A at α is the vector field
u along α satisfying u(0) = 0 and Du

dτ = dα
dτ .

2 The gradient of the energy function E restricted to H0 is
w(τ) = u(τ)− τ ũ(τ), where u is the vector field defined in the
previous item, and ũ is the vector field obtained by parallel
translating u(1) backwards along α.

α(t)

α(0)

α(1)
H

t(α(1)−α(0))

Figure: Illustration of path-straightening update on a curve in R2.



Path Straightening for a Unit Sphere

An example of path-straightening method for computing geodesics
between two points on S2.
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Path Straightening in Pre-Shape Space of Closed
Curves

Example:
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Path Straightening Examples
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Figure: Illustration of path straightening: each example shows an initial path
(top), the final path (bottom left), and the evolution of the path energy E
(bottom right).



Overall Scheme for Computing Geodesics

[q1] [q2]

r

α

q1 (q2, γ
∗)

q2

Path Straightening

Re-parameterization

Figure: Gradient-based update of elements in [q2], while keeping q1 fixed, to
find the shortest geodesic between the orbits of [q1] and [q2].



Elastic Geodesics

Hand contours/ Leaves/ Nanoparticles



Elastic Geodesics



Elastic Geodesics 3D Curves
All these ideas extend easily to curves in higher dimensions.

Example 1:
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Elastic Registration of High-Dimensional Curves
Temporal alignment of human activity data: Two-hand wave

Sequence 1, f1

Sequence 2, f2

Sequence 2 re-parameterized, f2 ◦ γ∗1
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Elastic Registration of High-Dimensional Curves
Temporal alignment of human activity data: One-arm wave

Sequence 1, f1

Sequence 2, f2

Sequence 2 re-parameterized, f2 ◦ γ∗1
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Shape Analysis of Colored Curves
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Shape Analysis of Colored Curves
Let the shape coordinate function along a closed curves be given by
βs : D → Rn and the auxiliary function be given by βt : D → Rk .

Form a joint shape and texture curve: β(t) =

[
βs(t)
bβt (t)

]
∈ Rn+k . Here

b > 0 is a parameter introduced to control the influence of the auxiliary
function, relative to the shape function.
Define augmented pre-space as:

C2 = {q : D → R(n+k)|
∫

D
〈q(t), q(t)〉 dt = 1,

∫
D
|q(t)|q(t) dt = 0} .

The rotation group acting on this space is given by

R =

[
SO(n) 0

0 Ik

]
⊂ SO(n + k),

where Ik is the k × k identity matrix.
Orbits under the joint action of the rotation and the re-parameterization
group:

[q] = {O(q ◦ γ)
√
γ̇|O ∈ R, γ ∈ Γ̃} .

To compare any two objects, represented by ([q1], β̄1
0 ) and ([q2], β̄2

0), we
use the distance function:

d(β1, β2; b) =

(√
ds([q1], [q2])2 + |β̄1

0 − β̄2
0 |2
)

(1)

where ds(q1, q2) is the geodesic distance in S2 and | · | is the Euclidean
distance in Rk .



Example

Figure: Top row: two hand shapes immersed in artificial texture. Bottom row:
the texture functions along the two curves after smoothing.



Example
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Affine-Invariant Elastic Shape Analysis

Now we want the shape analysis to be invariant to the action of
the affine group.
The affine group for a plane is the semi-direct product
GA ≡ GL(2) nR2 with the action given by: GA × R2 → R2

((A,b), x) = Ax + b .

Similarity

Affine

Projective

Let β : S1 → R2 be a planar closed curve. The affine-orbit of β is
the set

[β]A =
{

Aβ + b | A ∈ GL(2),b ∈ R2} .



Affine Standardization of Curves

Theorem
For any non-degenerate β there exists a standardized element
β∗ ∈ [β]A, the affine-orbit of β, that satisfies the following three
conditions:

1 Lβ∗ = 1,
2 Centroid of β, Cβ∗ = 0, and
3 Covariance of points along β, Σβ∗ ∝ I.

Furthermore, for any two curves β1, β2 ∈ [β]A, the corresponding
standardized elements, β∗1 and β∗2 , are related by a rotation and
re-parameterization, β∗2 = O(β∗1 ◦ γ), where O ∈ SO(2) and γ ∈ Γ.

Thus, we can standardize the given affine-transformed curves and
apply elastic shape analysis derived earlier.



Affine Standardization of Curves

Figure: Affine standardization of curves. The original curves are shown in the
left and their standardizations are shown in the right.



Geodesics Using Path Straightening

Figure: Path-straightening on affine pre-shape space. The left side shows
Iterations of the path-straightening algorithm from top (initial path) to bottom
(final path). The right panel shows the corresponding evolution of the path
energy.



De-Standardization of Shapes Along Geodesic

Figure: Each case shows a geodesic in standardized similarity shape space
(top row) and its de-standardization (bottom row).



Summary: Shape Analysis of Curves

For registration of points across curves one needs an invariant
Riemannian metric, leading to an invariant distance.
This metric is too complex to be useful in practical situations. A
square-root transformation, SRVF, converts this metric into a
simpler L2 metric.
We define quotient spaces of L2 under shape-preserving
transformations, such as the rotation and re-parameterizations.
All the operations – registration, geodesics, statistical analysis,
etc. – take place in the SRVF space. Final solutions are
converted back to curve space by inverting SRVFs.
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Shape Clustering
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Figure: A set of 20 shapes of the left have been clustered using different
linkage criterion: average (top-right), nearest distance (bottom left), and
compete or furthest distance (bottom-right).



Shape Clustering
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Figure: A set of 20 shapes of the left have been clustered using different
linkage criterion: average (top-right), nearest distance (bottom left), and
compete or furthest distance (bottom-right).



Shape Clustering



3D Shape Clustering



Outline

1 Goals and Motivation
Motivation for Shape Analysis
Specific Goals

2 Past Work in Shape Analysis
3 Shape Analysis of Euclidean Curves

Registration Problem
Elastic Metric and SRVF Representation

4 Related Topics
Path Straightening Method
Shapes of Annotated Curves
Affine-Invariant Planar Shapes

5 Pattern Analysis Shapes
Clustering
Shape Summaries

Anuj Srivastava ELASTIC SHAPE ANALYSIS OF EUCLIDEAN CURVES



Shape Statistics

Sample mean:

µq = argmin
[q]∈S

n∑
i=1

ds([q], [qi ])
2 ,

and then, µq 7→ µ.



Elastic Averaging of Multiple Shape Sequences

Four of Six Sequences Used in Experiment

Pre-Alignment Mean

Post-Alignment Mean



Shape Statistics

PCA in the tangent space at the mean

Testing equality of shape populations across time frames: Truncated
Wrapped Normal Distributions

p values (left) and binary decisions (right)

The nanoparticle shape populations across frames are increasing
different as the frames are further apart in time.



Leaves Shapes



Leaves Classification



PCA of Curves in R3

(a) A collection of 20 spiral curves used in this experiment
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(b) the decrease in the norm of the gradient of Karcher variance
function during mean estimation, (c) the estimated Karcher mean and
(d) the estimated singular values of the covariance matrix.



PCA of Curves in R3
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Random samples from the estimated wrapped-normal density in the
shape space.
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