ELASTIC SHAPE ANALYSIS OF EUCLIDEAN CURVES

Anuj Srivastava

Department of Statistics, Florida State University

Outline

(9) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals
(2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves
- Registration Problem
- Elastic Metric and SRVF Representation
(4) Related Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar Shapes
(5) Pattern Analysis Shapes
- Clustering
- Shape Summaries

Outline

(1) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals

2 Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves

- Registration Problem
- Elastic Metric and SRVF Representation
(4) Related Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar Shapes

5 Pattern Analysis Shapes

- Clustering
- Shape Summaries
- Mitochondria contours - study of shapes.

- Leaves

－Nanoparticles：

－Proteins，RNAs－Structure Analysis

- Assume all the objects have the same topology, as described below.
- Euclidean Curves: They are all maps of the type: $f: D \rightarrow \mathbb{R}^{k}$, where D is a one-dimensional compact space. Examples:
- $D=[0,1]: f$ can be open or closed curve
- $D=\mathbb{S}^{1}: f$ is called a closed curve
- Curves on Manifolds: They are all maps of the type: $f: D \rightarrow M$, where D is a one-dimensional compact space. Examples:
- $D=[0,1]: f$ is called an open curve
- $D=\mathbb{S}^{1}: f$ is called a closed curve

Often call them trajectories on manifolds.

Outline

(1) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals
(2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves
- Registration Problem
- Elastic Metric and SRVF Representation
(4) Related Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar Shapes
(5) Pattern Analysis Shapes
- Clustering
- Shape Summaries

Specific Goals in Shape Analysis

Shape Analysis: A set of theoretical and computational tools that can provide:

- Shape Metric: Quantify differences in any two given shapes.

How different $\stackrel{\text { are these shapes? }}{\Longleftrightarrow}$

- Registration: Given any two objects find a mapping that assigns each point on an object to a unique point on another object
- Shape Deformation/Geodesic: How to optimally deform one shape into another.

Shape Analysis

- Shape summary: Compute sample mean, sample covariance, PCA, and principal modes of shape variability.

- Shape model and testing: Develop statistical models and perform hypothesis testing.
- Related tools: ANOVA, two-sample test, k-sample test, etc.
- Clustering and Classification: Unsupervised and supervised classification of shapes.
- Shape Regression:
- Much older and richer area, with ideas from many perspectives.
- Generally interested in quantifying differences in shapes of objects.
Kendall: Shape is a property left after removing shape preserving transformations.
- Historically statistical shape analysis is restricted to discrete data; each object is represented by a set of points or landmarks.
- Current interest lies in considering continuous objects (examples later). This includes curves and surfaces. These representations can be viewed as functions.
- Functions have shapes and shapes are represented by functions. FDA and shape analysis are quite similar in challenges and solutions.

D'Arcy Thompson - 1905

Figure: The top example studies variations in shapes of crocodilian skulls, while the bottom example compares the shape of an Argyropelecus olfersi with that of a Sternoptyx diaphana. (Data courtesy of Wikipedia Commons.)

Shape Representations

Iterated Closest Point (ICP):

$$
\operatorname{RMSD}=\min _{O \in S O(2), \rho \in \mathbb{R}_{+}, T \in \mathbb{R}^{2}, \varsigma \in \Sigma} \sum_{i=1}^{k}\left\|\left(T+\rho O x_{i}\right)-y_{\varsigma(i)}\right\|^{2} .
$$

- Translation: $T^{*}=\frac{1}{k} \sum_{i=1}^{k} y_{\varsigma(i)}-\frac{1}{k} \sum_{i=1}^{k} x_{i}$.
- Rotation: Compute $A=\sum_{i=1}^{k} y_{\varsigma(i)} x_{i}^{T}$ and set

$$
O^{*}= \begin{cases}U V^{T} & \\
U\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] V^{T} & \text { otherwise }(A)>0\end{cases}
$$

- Scale: $\rho^{*}=\frac{\sum_{i=1}^{k}\left\langle y_{\text {si }}, x_{i, t}\right\rangle}{\sum_{i=1}^{k}\left\langle x_{i, t}, x_{i, t}\right\rangle}$.
- Registration: Nearest neighbor, assignment problem, etc:

$$
\varsigma^{*}=\underset{\varsigma \in \Sigma}{\operatorname{argmin}} \sum_{i=1}^{k}\left\|y_{\varsigma(i)}-x_{i, t}\right\|^{2},
$$

ICP Examples

Figure: Examples of matching point clouds using ICP algorithm.

Figure: Different optimal registrations of two points sets using the nearest neighbor (NN) algorithm and the Hungarian algorithm

Active Shape Models

- Consider the set of n landmarks on an object as an $n \times 2$ matrix.
- Center the configuration by subtracting the mean.
- Rescale each configuration by dividing by its norm.
- Perform rotational alignment and compute straight line geodesics.

OTBCSNES	OBBOOBO

Figure: Examples of geodesic paths between same shapes using ASM.

- Same thing except respect the geometry of the underlying space.

Figure: Examples of geodesic paths between same shapes using ASM.

- Signed-Distance functions

- Difficult to find a geodesic path in the space of signed distance functions.
- Difficult to be invariance to rotation.
- Registration is pre-determined.

Outline

(1)
Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals
(2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves
- Registration Problem
- Elastic Metric and SRVF Representation
(4) Related Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar Shapes
(5) Pattern Analysis Shapes
- Clustering
- Shape Summaries

Figure: Registration of points across two curves using the arc-length and a convenient non-uniform sampling. Non-uniform sampling allows a better matching of features between β_{1} and β_{2}.

Elastic Shape Analysis

Elastic Shape Analysis
Perform registration and shape comparison (analysis) simultaneously.

- Parametrized curves - $f:[0,1] \rightarrow \mathbb{R}^{2}, \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$.

- Let Γ be the set of all diffeomorphisms of $[0,1]$ that preserve the boundaries. Elements $\gamma \in \Gamma$, plays the role of a re-parameterization function.
- For any curve $f:[0,1] \rightarrow \mathbb{R}^{2}$, and $\gamma \in \Gamma$, the composition $f \circ \gamma$ is a re-parameterization of f.
- 「 is a group (with composition as group operation), and $f \mapsto(f, \gamma)=f \circ \gamma$ defines a group action on the space of curves.

Example: Re-Parameterization

Example: $\gamma_{a}(t)=t+a t(1-t), \quad-1<a<1$.

Following group actions are shape preserving:

- Translation: For any $x \in \mathbb{R}^{2}$, the $f(t) \mapsto x+f(t)$ denotes a translation of f.
- Rotation: For any $O \in S O(2)$, the $f(t) \mapsto O f(t)$ denotes a rotation of f.
- Scaling: For any $a \in \mathbb{R}_{+}$, the $f(t) \mapsto a f(t)$ denotes the translation of f.
- Re-parameterization: For any $\gamma \in \Gamma, f(t) \mapsto f(\gamma(t))$ is a re-paramaterization of f.
We want shape metrics and shape analysis to be invariant to these actions. For instance, if d_{s} is a shape metric, then we want:

$$
d_{s}\left(f_{1}, f_{2}\right)=d_{s}\left(a O\left(f_{1} \circ \gamma\right)+x, f_{2}\right), \quad \forall a \in \mathbb{R}_{+}, O \in S O(2), \gamma \in \Gamma, x \in \mathbb{R}^{2}
$$

These transformations are considered nuisance in shape analysis.

Re-parameterization is not entirely a nuisance transformation. It is useful in solving the registration problem.

- Take two parameterized curves $f_{1}, f_{2}:[0,1] \rightarrow \mathbb{R}^{2}$.
- For any t, the point $f_{1}(t)$ on the first curve is said to be registered to the point $f_{2}(t)$ on the second curve.
- We can change the registration by re-parametrizing the curves.
- If we re-parameterize f_{2} by γ, then the new registration is $f_{1}(t) \leftrightarrow f_{2}(\gamma(t))$.

Metrics for Registration/Shape Comparsions

- We need an objective function to define optimality of registration.
- The \mathbb{L}^{2} norm seems like a natural choice but it suffers from the pinching effect.

$$
\inf _{\gamma \in \Gamma}\left\|f_{1}-f_{2} \circ \gamma\right\|
$$

- As earlier, the main problem is $\|f\| \neq\|f \circ \gamma\|$, in general.
- We need a metric that satisfies:

$$
d\left(f_{1}, f_{2}\right)=d\left(f_{1} \circ \gamma_{1}, f_{2} \circ \gamma_{2}\right), \quad \forall \gamma_{1}, \gamma_{2} \in \Gamma .
$$

- We will define an elastic shape metric (start with a Riemannian metric and then derive distance under that metric) that satisfies this property.
- This metric will be too complex to use directly, so we will simplify it using a square-root transformation.

Outline

(1) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals
(2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves
- Registration Problem
- Elastic Metric and SRVF RepresentationRelated Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar ShapesPattern Analysis Shapes
- Clustering
- Shape Summaries
- Let $f:[0,1] \rightarrow \mathbb{R}^{n}$ be a Euclidean curve. $\dot{f}(t)$ is the velocity vector at $f(t)$.
- $r(t)=|\dot{f}(t)|$ is the speed function, and
- $\Theta(t)=\frac{\dot{f}(t)}{r(t)}$ is the direction vector.

We represent a curve by the pair (r, Θ).

- For a re-parameterized curve $f \circ \gamma$, the representation is given by $((r \circ \gamma) \dot{\gamma}, \Theta \circ \gamma)$.
- Elastic Riemannian Metric for curves: for any a, b,

$$
\begin{aligned}
\left\langle\left(\delta r_{1}, \delta \Theta_{1}\right),\left(\delta r_{2}, \delta \Theta_{2}\right)\right\rangle_{(r, \Theta)} & =a^{2} \int_{0}^{1} \delta r_{1}(t) \delta r_{2}(t) \frac{1}{r(t)} d t \\
& +b^{2} \int_{0}^{1} \delta \Theta_{1}(t) \delta \Theta_{2}(t) r(t) d t
\end{aligned}
$$

- This metric is invariant to re-parameterization of f :

$$
\begin{aligned}
& \left\langle\left(\delta\left(\left(r_{1} \circ \gamma\right) \dot{\gamma}\right), \delta\left(\Theta_{1} \circ \gamma\right)\right),\left(\delta\left(\left(r_{2} \circ \gamma\right) \dot{\gamma}\right), \delta\left(\Theta_{2} \circ \gamma\right)\right)\right\rangle_{(((r \circ \gamma) \dot{\gamma}),(\Theta \circ \gamma))} \\
& =\left\langle\left(\delta r_{1}, \delta \Theta_{1}\right),\left(\delta r_{2}, \delta \Theta_{2}\right)\right\rangle_{(r, \Theta)}
\end{aligned}
$$

SRVF Representation for Curves

- Define the square-root velocity function (SRVF):

$$
q(t) \equiv \frac{\dot{f}(t)}{\sqrt{|\dot{f}(t)|}}=\sqrt{r(t)} \Theta(t) .
$$

- Computing variation on both sides, we get:

$$
\delta q=\frac{1}{2 \sqrt{r(t)}} \delta r(t) \Theta(t)+\sqrt{r(t)} \delta \Theta(t)
$$

- Taking standard \mathbb{L}^{2} inner product between two such variations:

$$
\left\langle\delta q_{1}, \delta q_{2}\right\rangle=\frac{1}{4} \int_{0}^{1} \delta r_{1}(t) \delta r_{2}(t) \frac{1}{r(t)} d t+\int_{0}^{1}\left\langle\delta \Theta_{1}(t), \delta \Theta_{2}(t)\right\rangle r(t) d t .
$$

Use $\left\langle\Theta(t), \delta \Theta_{i}(t)\right\rangle=0$.

- This is equal to the elastic Riemannian metric for $a=1 / 2$ and $b=1$. Thus, the mapping $f \mapsto q$ transforms the elastic Riemannian metric into the \mathbb{L}^{2} metric for these weights.
- The geodesic distance between any f_{1} and f_{2} under the elastic Riemannian metric (for $a=1 / 2$ and $b=1$) is simply $\left\|q_{1}-q_{2}\right\|$.

SRVF Representation

- We use SRVF q for analyzing shape of a curve f.
- The SRVF of $(f \circ \gamma)$ is $(q \circ \gamma) \sqrt{\gamma}$. Just by chain rule. We will denote $(q, \gamma)=(q \circ \gamma) \sqrt{\gamma}$. Commutative Diagram:

- Lemma: The chosen distance satisfies:
$d_{F R}\left(f_{1}, f_{2}\right)=d_{F R}\left(f_{1} \circ \gamma, f_{2} \circ \gamma\right)$
We need to show that $\left\|\left(q_{1} \circ \gamma\right) \sqrt{\dot{\gamma}}-\left(q_{2} \circ \gamma\right) \sqrt{\dot{\gamma}}\right\|=\left\|q_{1}-q_{2}\right\|$.

$$
\begin{aligned}
\left\|\left(q_{1}, \gamma\right)-\left(a_{2}, \gamma\right)\right\|^{2} & =\int_{0}^{1}\left(q_{1}(\gamma(t)) \sqrt{\dot{\gamma}(t)}-q_{2}(\gamma(t)) \sqrt{\dot{\gamma}(t)}\right)^{2} d t \\
& =\int_{0}^{1}\left(q_{1}(\gamma(t))-q_{2}(\gamma(t))\right)^{2} \dot{\gamma}(t) d t=\left\|q_{1}-q_{2}\right\|^{2} . \square
\end{aligned}
$$

- Checking all nuisance transformations:
(1) Translation: SRVF q for a curve f is invariant to its translation!
(2) Scaling: We can rescale all the curves to be of unit length, to get rid of the scale variability. It turns out that $\|q\|=L[f]$. So, if $L[f]=1$, then the corresponding SRVF q is an element of a unit sphere \mathbb{S}_{∞}.
(3) Re-parameterization and rotations we can't remove by any such standardization. However, we have the nice property:

$$
\left\|q_{1}-q_{2}\right\|=\left\|O q_{1}-O q_{2}\right\|=\left\|\left(q_{1}, \gamma\right)-\left(q_{2}, \gamma\right)\right\|
$$

- We use the notion of equivalence classes, or orbits, to reconcile the remaining two transformation. For any curve f, and its SRVF q, we its equivalence class to be:

$$
[q]=\{O(q, \gamma) \mid O \in S O(n), \gamma \in \Gamma\}
$$

This set represents SRVFS of all possible rotations and re-parameterizations of f. Each equivalence class represents a shape.

- $\mathbb{S}_{\infty} \subset \mathbb{L}^{2}$ is called the pre-shape space.
- The set of all equivalence classes is a quotient space $\mathbb{L}^{2} /(S O(n) \times \Gamma)$. It is called the shape space.
- The distance between any two curves in the pre-shape space is $\cos ^{-1}\left(\left\langle q_{1}, q_{2}\right\rangle\right)$.
- The distance in the shape space, called the shape metric, is given by:

$$
d_{s}\left(\left[q_{1}\right],\left[q_{2}\right]\right)=\inf _{(O, \gamma) \in S O(n) \times \Gamma} \cos ^{-1}\left(\left\langle q_{1}, O\left(q_{2}, \gamma\right)\right\rangle\right)
$$

This include rotational alignment and non-rigid registration of the two curves.

- Given optimal parameters O^{*}, γ^{*}, the shortest path or a geodesics is simply:

$$
\alpha(\tau)=\frac{1}{\sin (\vartheta)}\left(\sin (\vartheta(1-t)) q_{1}+\sin (\vartheta t) q_{2}^{*}\right), \quad \cos (\vartheta)=\left\langle q_{1}, q_{2}^{*}\right\rangle,
$$

where $q_{2}^{*}=O^{*}\left(q_{2}, \gamma^{*}\right)$.

- So far we have developed a technique for computing geodesics and geodesic distances in shape space of curves.
- Suppose we are interested in only closed curves.
- The SRVF q of a closed curve f satisfies an additional condition:

$$
f(0)=f(1) \Leftrightarrow \int_{0}^{1} q(t)|q(t)| d t=0
$$

- So we are now interested in the pre-shape space:

$$
\mathcal{C}=\left\{q \in \mathbb{S}_{\infty}\left|\int_{0}^{1} q(t)\right| q(t) \mid d t=0\right\} \subset \mathbb{S}_{\infty}
$$

The geodesics here are no longer arcs on great circles. We don't know have analytical expressions for these geodesics or geodesic distances.

- We have developed a numerical technique called path straightening for finding geodesics on \mathcal{C}.

Outline

(1) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals

2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves

- Registration Problem
- Elastic Metric and SRVF Representation
(4) Related Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar Shapes
(5) Pattern Analysis Shapes
- Clustering
- Shape Summaries
- The goal is to find a (locally) shortest path between two points p and q on a Riemannian manifold M.

$$
\begin{aligned}
\hat{\alpha} & =\arg \inf _{\alpha:[0,1] \rightarrow M, \alpha(0)=p, \alpha(1)=q} \int_{0}^{1} \sqrt{\langle\dot{\alpha}(t), \dot{\alpha}(t)\rangle_{\alpha(t)}} d t \\
& =\arg _{\alpha:[0,1] \rightarrow M, \alpha(0)=p, \alpha(1)=q} \int_{0}^{1}\langle\dot{\alpha}(t), \dot{\alpha}(t)\rangle_{\alpha(t)} d t
\end{aligned}
$$

- Define $E[\alpha]=\int_{0}^{1}\langle\dot{\alpha}(t), \dot{\alpha}(t)\rangle_{\alpha(t)} d t$.
- The set of all paths is:

$$
\mathcal{A}=\left\{\alpha:[0,1] \rightarrow M \mid \alpha \text { is differentiable and } \dot{\alpha} \in \mathbb{L}^{2}([0,1], M)\right\},
$$

- The subset of paths with desired boundary conditions:

$$
\mathcal{A}_{0}=\left\{\alpha \in \mathcal{A} \mid \alpha(0)=p_{1} \text { and } \alpha(1)=p_{2}\right\} .
$$

- The tangent spaces to these sets of paths:

$$
T_{\alpha}(\mathcal{A})=\left\{w:[0,1] \rightarrow T M \left\lvert\, \frac{D w}{d \tau} \in \mathbb{L}^{2}\right. \text { and } \forall \tau \in[0,1], w(\tau) \in T_{\alpha(\tau)}(M)\right\}
$$

where $T_{\alpha(\tau)}(M)$ is the tangent space of M at the point $\alpha(\tau) \in M$

- Each element of $T_{\alpha}(\mathcal{A})$ is a (tangent) vector field along α.
- For the set \mathcal{A}_{0}, the tangent space is

$$
T_{\alpha}\left(\mathcal{A}_{0}\right)=\left\{w \in T_{\alpha}(\mathcal{A}) \mid w(0)=w(1)=0\right\} .
$$

- This is a set of vector fields along α that are zero at the boundaries.
- The optimization problem is:

$$
\hat{\alpha}=\arg \inf _{\alpha \in \mathcal{A}_{0}} \int_{0}^{1}\langle\dot{\alpha}(t), \dot{\alpha}(t)\rangle d t
$$

Gradient of Energy E

Theorem

Let $\alpha:[0,1] \rightarrow M$ be a path such that $\alpha(0)=p_{1}$ and $\alpha(1)=p_{2}$, i.e. $\alpha \in \mathcal{A}_{0}$. Then, with respect to the Palais metric:
(1) The gradient of the energy function E on \mathcal{A} at α is the vector field u along α satisfying $u(0)=0$ and $\frac{D u}{d \tau}=\frac{d \alpha}{d \tau}$.
(2) The gradient of the energy function E restricted to \mathcal{H}_{0} is $w(\tau)=u(\tau)-\tau \tilde{u}(\tau)$, where u is the vector field defined in the previous item, and \tilde{u} is the vector field obtained by parallel translating $u(1)$ backwards along α.

Figure: Illustration of path-straightening update on a curve in \mathbb{R}^{2}.

Path Straightening for a Unit Sphere

An example of path－straightening method for computing geodesics between two points on \mathbb{S}^{2} ．

Path Straightening in Pre-Shape Space of Closed Curves

Example:

127

Figure: Illustration of path straightening: each example shows an initial path (top), the final path (bottom left), and the evolution of the path energy E (bottom right).

Overall Scheme for Computing Geodesics

Figure: Gradient-based update of elements in [q_{2}], while keeping q_{1} fixed, to find the shortest geodesic between the orbits of $\left[q_{1}\right]$ and $\left[q_{2}\right]$.

Elastic Geodesics

- Hand contours/ Leaves/ Nanoparticles

Elastic Geodesics 3D Curves

All these ideas extend easily to curves in higher dimensions.

- Example 1:

- Example 2 :

Elastic Registration of High-Dimensional Curves

Temporal alignment of human activity data: Two-hand wave

Sequence 1, f_{1}

Sequence 2, f_{2}

Sequence 2 re-parameterized, $f_{2} \circ \gamma_{1}^{*}$

Warping γ^{*}
$\left|q_{1}(t)-q_{2}(t)\right|,\left|q_{1}(t)-q_{2}\left(\gamma^{*}(t)\right) \sqrt{\dot{\gamma}^{*}(t)}\right|$

Elastic Registration of High-Dimensional Curves

Temporal alignment of human activity data: One-arm wave

Sequence 1, f_{1}

Sequence 2, f_{2}

Sequence 2 re-parameterized, $f_{2} \circ \gamma_{1}^{*}$

Warping γ^{*}

$$
\text { Plots of }\left|q_{1}(t)-q_{2}(t)\right| \text { and }\left|q_{1}(t)-q_{2}\left(\gamma^{*}(t)\right) \sqrt{\dot{\gamma}^{*}(t)}\right|
$$

Outline

(1) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals

2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves

- Registration Problem
- Elastic Metric and SRVF Representation

4 Related Topics

- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar Shapes
(5) Pattern Analysis Shapes
- Clustering
- Shape Summaries
Generalized cylinder

Shape Analysis of Colored Curves

- Let the shape coordinate function along a closed curves be given by $\beta_{s}: D \rightarrow \mathbb{R}^{n}$ and the auxiliary function be given by $\beta_{t}: D \rightarrow \mathbb{R}^{k}$.
- Form a joint shape and texture curve: $\beta(t)=\left[\begin{array}{c}\beta_{s}(t) \\ b \beta_{t}(t)\end{array}\right] \in \mathbb{R}^{n+k}$. Here $b>0$ is a parameter introduced to control the influence of the auxiliary function, relative to the shape function.
- Define augmented pre-space as:

$$
\mathcal{C}_{2}=\left\{q: D \rightarrow \mathbb{R}^{(n+k)}\left|\int_{D}\langle q(t), q(t)\rangle d t=1, \int_{D}\right| q(t) \mid q(t) d t=0\right\} .
$$

- The rotation group acting on this space is given by

$$
\mathcal{R}=\left[\begin{array}{cc}
S O(n) & 0 \\
0 & I_{k}
\end{array}\right] \subset S O(n+k)
$$

where I_{k} is the $k \times k$ identity matrix.

- Orbits under the joint action of the rotation and the re-parameterization group:

$$
[q]=\{O(q \circ \gamma) \sqrt{\hat{\gamma}} \mid O \in \mathcal{R}, \gamma \in \tilde{\Gamma}\} .
$$

- To compare any two objects, represented by ([$\left.\left[q^{1}\right], \bar{\beta}_{0}^{1}\right)$ and $\left(\left[q^{2}\right], \bar{\beta}_{0}^{2}\right)$, we use the distance function:

$$
\begin{equation*}
d\left(\beta^{1}, \beta^{2} ; b\right)=\left(\sqrt{d_{s}\left(\left[q^{1}\right],\left[q^{2}\right]\right)^{2}+\left|\bar{\beta}_{0}^{1}-\bar{\beta}_{0}^{2}\right|^{2}}\right) \tag{1}
\end{equation*}
$$

Example

Figure: Top row: two hand shapes immersed in artificial texture. Bottom row: the texture functions along the two curves after smoothing.
$b=0.1$

Outline

(1) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals

2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves

- Registration Problem
- Elastic Metric and SRVF Representation
(4) Related Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar ShapesPattern Analysis Shapes
- Clustering
- Shape Summaries

Affine-Invariant Elastic Shape Analysis

- Now we want the shape analysis to be invariant to the action of the affine group.
- The affine group for a plane is the semi-direct product $\mathcal{G}_{A} \equiv G L(2) \ltimes \mathbb{R}^{2}$ with the action given by: $\mathcal{G}_{A} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
((A, b), x)=A x+b .
$$

- Let $\beta: \mathbb{S}^{1} \rightarrow \mathbb{R}^{2}$ be a planar closed curve. The affine-orbit of β is the set

$$
[\beta]_{A}=\left\{\boldsymbol{A} \beta+b \mid A \in G L(2), b \in \mathbb{R}^{2}\right\} .
$$

Theorem

For any non-degenerate β there exists a standardized element $\beta^{*} \in[\beta]_{A}$, the affine-orbit of β, that satisfies the following three conditions:
(1) $L_{\beta^{*}}=1$,
(2) Centroid of $\beta, C_{\beta^{*}}=0$, and
(3) Covariance of points along $\beta, \Sigma_{\beta^{*}} \propto I$.

Furthermore, for any two curves $\beta_{1}, \beta_{2} \in[\beta]_{A}$, the corresponding standardized elements, β_{1}^{*} and β_{2}^{*}, are related by a rotation and re-parameterization, $\beta_{2}^{*}=O\left(\beta_{1}^{*} \circ \gamma\right)$, where $O \in S O(2)$ and $\gamma \in \Gamma$.

Thus, we can standardize the given affine-transformed curves and apply elastic shape analysis derived earlier.

Figure: Affine standardization of curves. The original curves are shown in the left and their standardizations are shown in the right.

Figure: Path-straightening on affine pre-shape space. The left side shows Iterations of the path-straightening algorithm from top (initial path) to bottom (final path). The right panel shows the corresponding evolution of the path energy.

Figure: Each case shows a geodesic in standardized similarity shape space (top row) and its de-standardization (bottom row).

- For registration of points across curves one needs an invariant Riemannian metric, leading to an invariant distance.
- This metric is too complex to be useful in practical situations. A square-root transformation, SRVF, converts this metric into a simpler \mathbb{L}^{2} metric.
- We define quotient spaces of \mathbb{L}^{2} under shape-preserving transformations, such as the rotation and re-parameterizations.
- All the operations - registration, geodesics, statistical analysis, etc. - take place in the SRVF space. Final solutions are converted back to curve space by inverting SRVFs.

Outline

(1) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals

2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves

- Registration Problem
- Elastic Metric and SRVF Representation
(4) Related Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar Shapes
(5) Pattern Analysis Shapes
- Clustering
- Shape Summaries

Figure: A set of 20 shapes of the left have been clustered using different linkage criterion: average (top-right), nearest distance (bottom left), and compete or furthest distance (bottom-right).

Figure: A set of 20 shapes of the left have been clustered using different linkage criterion: average (top-right), nearest distance (bottom left), and compete or furthest distance (bottom-right).

Shape Clustering

Outline

(1) Goals and Motivation

- Motivation for Shape Analysis
- Specific Goals

2) Past Work in Shape Analysis
(3) Shape Analysis of Euclidean Curves

- Registration Problem
- Elastic Metric and SRVF Representation
(4) Related Topics
- Path Straightening Method
- Shapes of Annotated Curves
- Affine-Invariant Planar Shapes
(5) Pattern Analysis Shapes
- Clustering
- Shape Summaries

Shape Statistics

－Sample mean：

$$
\mu_{q}=\underset{[q] \in \mathcal{S}}{\operatorname{argmin}} \sum_{i=1}^{n} d_{s}\left([q],\left[q_{i}\right]\right)^{2},
$$

and then，$\mu_{q} \mapsto \mu$ ．

Four of Six Sequences Used in Experiment
Pre-Alignment Mean
Post-Alignment Mean

Shape Statistics

- PCA in the tangent space at the mean

- Testing equality of shape populations across time frames: Truncated Wrapped Normal Distributions

p values (left) and binary decisions (right)
The nanoparticle shape populations across frames are increasing different as the frames are further apart in time.

Leaves Shapes

Leaves Classification

Methods	Recognition score
SM200	99.18
TAR (Mouine et al., 2013a, 2013b)	90.40
TSL (Mouine et al., 2013a, 2013b)	95.73
TOA (Mouine et al., 2013a, 2013b)	95.20
TSLA (Mouine et al., 2013a, 2013b)	96.53
Shape-Tree (Felzenszwalb and Schwartz, 2007)	96.28
IDSC + DP (Ling and Jacobs, 2007)	94.13
SC + DP (Ling and Jacobs, 2007)	88.12
Fourier descriptors (Ling and Jacobs, 2007)	89.60
Method	Score
SM200 (this paper)	0.953
TAR (Mouine et al., 2013a, 2013b)	0.636
TSL (Mouine et al., 2013a, 2013b)	0.757
TOA (Mouine et al., 2013a, 2013b)	0.780
TSLA (Mouine et al., 2013a, 2013b)	0.779
IFSC_USP_run2	0.402
inria_imedia_plantnet_run1	0.464
IFSC_USP_run 1	0.430
URIS_run 3	0.513
URIS_run1	0.543
Sabanci-okan-run1	0.476
URIS_run2	0.508
URIS_run4	0.538
inria_imedia_plantnet_run2	0.554
DFH + GP (Yahiaoui et al., 2012)	0.725

(a) A collection of 20 spiral curves used in this experiment

(a)

(b)

(c)

(d)
(b) the decrease in the norm of the gradient of Karcher variance function during mean estimation, (c) the estimated Karcher mean and (d) the estimated singular values of the covariance matrix.

Random samples from the estimated wrapped-normal density in the shape space.

