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Workshop Area

This CBMS conference will feature an intensive lecture series on elastic
methods for statistical analysis of functional and shape data, using tools from
Riemannian geometry, Hilbert space methods, and computational science.
The main focus of this conference is on geometric approaches, especially on
using elastic Riemannian metrics with desired invariance properties, and
square-root representations that simplify computations. These approaches
allow joint registration and statistical analysis of functional data, and are
termed elastic for that reason. The statistical goals include comparisons,
summarization, clustering, modeling, and testing of functional and shape
data objects.

Learn about the general areas of functional data analysis and shape
analysis.

Focus on fundamental issues and recent developments, not on
derivations and proofs.

Use examples from both simulated and real data to motivate the ideas.

As much as interactions as possible. Learn by discussion. Plenty of time
set aside for questions and discussions.
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Historical Perspective

Functional and shape data analysis are old topics, lots of work
already in the past.
Early years of the new millennium saw a renewed focus and
energy in these areas.
Reasons:

Increasing availability of large datasets involving structured data,
especially in the fields of computer vision, pattern recognition, and
medical imaging.
Increases in computation power and storage.
A favorable atmosphere for the confluence of ideas from geometry
and statistics.

What differentiates this material from past approaches is that it
integrates the registration problem into shape analysis.
This material investigates newer mathematical representations
and associated (invariant) Riemannian metrics that play a role in
facilitating functional and shape data analysis.
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Plan for the Week

Monday

AM – Lecture 1: Introduction, Motivation, and Background
(Srivastava)
PM – Lecture 2: Registration of Real-Valued Functions Using
Elastic Metric (Srivastava)

Tuesday

AM – Lecture 3: Euclidean Curves and Shape Analysis
(Srivastava)
PM – Lecture 4: Fundamental Formulations, Recent Progress, and
Open Problems. (Srivastava/Klassen)

Wednesday

AM – Lecture 5: Shape Analysis of Surfaces (Srivastava)
PM – Lecture 6: Statistical Models for Functions, Curves, and
Surfaces. (Srivastava/Karthik)
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General Layout

Thursday
AM – Lecture 7: Analysis of Longitudinal Data (Trajectories on
Manifolds) (Klassen/Srivastava)
PM – Lecture 8: Large-Deformation Diffeomorphic Metric Mapping
(LDDMM) (Younes)

Friday
AM – Lecture 9: Applications in Neuroimaging I (Veera B.)
PM – Lecture 10: Applications in Neuroimaging II (Zhengwu
Zhang)
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Background Requisites

Pre-requisites: Real analysis, linear algebra, numerical analysis,
and computing (matlab).

Ingredients: We will use ideas from geometry, algebra, functional
analysis, and statistics to build up concepts. These are
elementary ideas in their own fields but not as elementary for
newcomers. Not everything needs to be understood all the way.
Focus is on ”Working Knowledge”

Message: This topic area is multidisciplinary, not just
interdisciplinary:
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Functional Data Analysis (FDA)

Functional Data Analysis: A term coined by Jim Ramsay and
colleagues– perhaps in late 1980s or even earlier.

Data analysis where random quantities of interest are functions, i.e.
elements of a function space F . f : D → Rk ,M
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Statistical modeling and inference takes place on a function space. One
typically needs a metric structure, often it is a Hilbert structure.

Several textbooks have been written with their own strengths and
weaknesses.
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Tasks in FDA

For the most part it is same as any statistics domain. Having chosen the
metric structure on the function spaces, one can

Summarize functional data: central tendency in the data (mean,
median), covariance, principal modes of variability.

Inference on function spaces: Model the function observations,
observation = signal + noise, estimation theory, analysis.

Test hypothesis involving observations of functional variables. This
includes classification, clustering, two-sample test, ANOVA, etc.

Regress, Predict: Develop regression models where functional variables
are predictors, responses, or both!

The difference:

Infinite dimensionality

Registration
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Shape Analysis

Kendall: Shape is a property left after removing shape preserving
transformations.

Shape Analysis: A set of theoretical and computational tools that can provide:

Shape Metric: Quantify differences in any two given shapes.

How different are these shapes?
⇐⇒

Shape Deformation/Geodesic: How to optimally deform one shape into
another.
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Shape Analysis

Shape summary: Compute sample mean, sample covariance, PCA, and
principal modes of shape variability.

Shape model and testing: Develop statistical models and perform
hypothesis testing.

Related tools: ANOVA, two-sample test, k -sample test, etc.
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Shape Analysis: Main Challenge

Invariance: All these items – analysis and results – should be
invariant to certain shape preserving transformations.

Quality: Results should preserve important geometric features in
the original data.

Efficiency: Computational efficiency and simplicity of analysis.

13/30



Shape Analysis: Past and Present

Historically statistical shape analysis is restricted to discrete
data; each object is represented by a set of points or landmarks.
Current interest lies in considering continuous objects (examples
later). This includes curves and surfaces. These representations
can be viewed as functions.
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Intertwined Areas

Traditionally studied by different communities, with difference
focus.

FDA and shape analysis are actually quite similar in challenges.
In both cases, one needs metrics, summaries, registration,
modeling, testing, clustering, classification.

Functions have shapes and shapes are represented by functions.
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Motivation for FSDA

Large Swath of Application Areas:
Computer vision: depth sensing, activity recognition, automation
using cameras, video data analysis.
Computational Biology: complex biomolecular structures,
organisms – shapes and functionality.
Medical Imaging: neuroimaging.
Biometrics and Human Identification: human face, human body,
gait, iris, fingerprints,
Wearables, Mobility, Fitness: fitbit, sleep studies, motion capture
(MoCap),
General Longitudinal Data: meteorology, finance, economics,
academia.
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Motivation: Computer Vision

Pictures: Electro-optics (E/O) camera, infrared camera.
Kinect depth sensing: activity recognition, physical therapy,
posture.
Vision-based automation: self driving cars, industrial
engineering, nano-manufacturing.
Video data analysis: encoding, summarization, anomaly
detection, crowd surveillance,
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Motivation: Biological Structures

A lot of interest in studying statistical variability in structures of
biological objects, ranging from simple to complex. Abundance of
data!
Working hypothesis —

Biological Structures Equate with Functionality
Proteins: sequence → folding (structure) → function.
Understanding functions requires understanding struc-
tures.

Structure analysis — a platform of mathematical representations
followed by probabilistic superstructures.
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Some Examples of Biological Structures
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Motivation: Medical Imaging

Structure MRI, PET, CT-SCAN: brain substructures.
fMRI: Brain functional connectivity
Diffusion MRI
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Human Biometrics

Human biometrics is a fascinating problem area.

Facial Surfaces: 3D face recognition for biometrics

Human bodies: applications – medical (replace BMI), textile design.

Shapes are represented by surfaces in R3
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Neuron Morphology

Interested in neuron morphology for various medical reasons –
cognition, genomic associations, diseases.
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Wearables, Depth Sensing, Bodycentric Sensing

Gaming, activity data using remote sensing — kinect depth maps

(courtesy: Slideshare – Mark Melnykowycz)

Mobile depth sensing

Lifestyle evaluation, motivation, therapy: sleep studies.
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Discrete vs Continuous Representations

Important question: Discrete versus continuous. Finite-dimensional versus
infinite-dimensional.

Why work with continuous representations? Are we unnecessarily
complicating our tasks? We need discrete data for computational
purposes any way!

We will see that there are many advantages of developing methodology
using continuous representations.

Viewing objects as functions, curves, surfaces, etc, will allow as more
powerful analysis, better practical results, and more natural solutions.

Discretize as late possible!! (Grenander)
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FDA Versus Multivariate Statistics

Consider data that is sampled from an underlying function.

If the time points are synchronized across observations, and the focus is

only on the heights, then one can work with the vector y =


y1

y2
...

yn

 .

If the time points are also of significance, then one needs to keep them:
(t1, y1)
(t2, y2)

...
(tn, yn)
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FDA Versus Multivariate

How can we compare two such observations:
(t (1)1 , y (1)

1 )

(t (1)2 , y (1)
2 )

...
(t (1)n , y (1)

n )

 , and


(t (2)1 , y (2)

1 )

(t (2)2 , y (2)
2 )

...
(t (2)m , y (2)

m )


Working with continuous functions allows us to interpolate and
resample them at arbitrary points. We can easily compare two
functions as elements of a function space.
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Additionally, we can treat {ti}s as random variables also and
include them in the models. We will call this time warping!
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Formal Models With Time Warping

Typically, statistical models take the form

yj = f (tj) + noise .

This is model with additive noise.
Some models include multiplicative noise also.
Using continuous data, we can include time-warping or
compositional noise also: fi 7→ fi ◦ γi .
A very general model takes the form:

yi,j = ai fi(γi(ti,j)) + εi,j
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FDA Versus Times-Series Analysis

Time series analysis is inherently discrete. The time stamps are
considered equally spaced and fixed!
Focus on temporal evolution of the process. Typical scenario:
Assume a model and estimate model parameters using a single
sequence. The models are relatively limited (for instance,
directional).
FDA allows for a richer class of models and more general
treatments. It does not assume a temporal ordering for data.
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Vector Spaces

Vector Space:
For any v1, v2 ∈ V and a1, a2 ∈ R, we have a1v1 + a2v2 ∈ V .
There is a zero vector 0 ∈ V such that v + 0 = v for all v .

Examples:
Rn

the set of continuous functions on real line.
the set of all n × n matrices.
the set of all square-integrable functions on [0, 1].

Also called flat spaces or linear spaces.
Subspace: A subset S of V that is also a vector space.
Examples:

Rk , for k < n, is a subspace of Rn

the set of continuous functions on real line with integral zero.
{f : R→ R|

∫
R f (x)dx = 0}.

the set of all n × n matrices with trace zero.



Vector Space: Norm

Norm: A mapping p : V → R≥0 such that For all a ∈ R and all
v1, v2 ∈ V ,

1 p(v1 + v2) ≤ p(v1) + p(v2) (subadditive or the triangle inequality).
2 p(av) = |a|p(v) (absolutely scalable).
3 If p(v) = 0 then v = 0 is the zero vector (positive definite).

Denote by p(·) by ‖ · ‖
Examples:

`p norm on Rn: ‖v‖p = (vp
1 + vp

2 + · · ·+ vp
n )(1/p).

Lp norm: ‖f‖p =
(∫ 1

0 |f (t)|pdt
)1/p

.

Sobolev norm: ‖f‖k
p = ‖f‖p + ‖f (1)‖p + · · ·+ ‖f (k)‖p.

Vector spaces:
`p space = {v ∈ Rn | ‖v‖p <∞}
Lp space = {f : [0, 1] 7→ R | ‖f‖p <∞}
Sobolev space Lk,p: = {f : [0, 1] 7→ R | ‖f‖k

p <∞}



Hilbert Spaces

Let F be a vector space.

Banach Space: A vector space F that is complete, and there
exists a norm on F .
Examples: `p, Lp, Lk,p.
Hilbert Space: F is a Banach space, and there is an inner
product associated with the norm on F . (Inner product is a
bilinear map from F to R).
Prime Example:

Standard L2 inner product: 〈f1, f2〉 =
∫

D 〈f1(t), f2(t)〉 dt .
L2 norm or L2 distance:

‖f1 − f2‖ = (〈f1 − f2, f1 − f2〉)1/2

=

(∫
D
〈f1(t)− f2(t), f1(t)− f2(t)〉 dt

)1/2

Denote: L2(D,Rk ) = {f : D → Rk |‖f‖ <∞}. Often use L2 for the
set.



Complete Orthonormal Basis

Let B = {b1,b2, . . . , } be the set of functions that form a complete
orthonormal basis of L2.
That is, for any f ∈ F , we have: f =

∑∞
j=1 cjbj , cj ∈ R. {cj}

completely represent f . There is an isometric mapping between
L2 and `2.
An approximate representation of f ≈

∑J
j=1 cjbj . One can exactly

represent elements of the subspace

F0 = {f ∈ L2|f =
J∑

j=1

cjbj}. Thus, F0 can be identified with RJ .

Examples of basis sets of L2([0,1],R):
Fourier basis: B = {1, (cos(2πit), sin(2πit))|i = 1, 2, . . . }.
Legendre Polynomials
Wavelets



Summary Statistics

Let P be a probability distribution on L2, and let f1, f2, . . . , fn be
samples from P.

Mean function: Since L2 norm provides a distance, one can
define a mean under this distance.
Define µ(t) = EP [f ](t) (how is it defined?)
Given a set of functions, we can estimate this quantity using:

µ̂ = argmin
f∈F

n∑
i=1

‖f − fi‖2; µ̂(t) =
1
n

∑
i

fi (t) .

Also called the cross-sectional mean.
Example:
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Cross-sectional variation: s(t) = std{fi (t)}.



Summary Statistics

Second order statistics:

Covariance function C(s, t) = EP [(f (t)− µ(t))(f (s)− µ(s))].
Viewed as a linear operator on F :

A : F → F , Af (t) =

∫
D

C(t , s)f (s)ds .

Sample covariance function:

Ĉ(s, t) =
1

n − 1

n∑
i=1

(fi (t)− µ̂(t))(fi (s)− µ̂(s)) .

In practice, computed using vectors obtained by discretizing the
functions. Ĉ is then a T × T covariance matrix where T is the
number of sampled time points.
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Functional PCA – FPCA

Random f ∈ L2 and assume that the covariance C(t , s) is
continuous in t and s.
Karhunen-Loeve theorem states that f can be expressed in
terms of an orthonormal basis {bj} of L2:

f (t) =
∑

j

zjbj (t)

where {zj} are mean zero and uncorrelated.
Practice:

Discretize (sample) each function at identical T time points.
Form the sample covariance matrix Ĉ ∈ RT×T ,
Perform the svd Ĉ = BΣBT , then the columns of B provide
(samples from) eigenfunctions of f .

Columns of B, denoted by bj , are called the principal directions
of variation in the data, and cij =

〈
fi ,bj

〉
are the projections of the

data along these directions.



Statistical Model for FPCA

Assuming that the observations follow the model:

fi (t) = µ(t) +
∞∑
j=1

ci,jbj (t)

where:
µ(t) is the expected value of fi (t),
{bj} form an orthonormal basis of L2, and
ci,j ∈ R are coefficients of fi with respect to {bj}. In order to
ensure that µ is the mean of fi , we impose the condition that the
sample mean of {c·,j} is zero.
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Statistical Model for FPCA

Solution:

(µ̂, b̂) = argmin
µ,{bj}

 n∑
i=1

‖fi − µ−
J∑

j=1

〈
fi ,bj

〉
bj‖2

 ,

and set ĉi,j =
〈

fi , b̂j

〉
.

Estimate µ using sample mean:

µ̂ =
1
n

n∑
i=1

fi .

Estimate {bj} using PCA.
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FPCA Example 1

n = 50 functions, {fi = ui ∗ f0}, f0 ≡ N (0.5,0.01), ui ∼ U(0,5)
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FPCA Example 1...
n = 50 functions, {fi = ui ∗ f0}, f0 ≡ N (0.5,0.01), , ui ∼ U(0,5)
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FPCA Example 2
n = 50 functions, {fi = ui ∗ f0 + σWi}, f0 ≡ N (0.5,0.01), ui ∼ U(0,5),
σ = 0.5
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FPCA Example 2...
n = 50 functions, {fi = ui ∗ f0 + σWi}, f0 ≡ N (0.5,0.01), ,
ui ∼ U(0,5), σ = 0.5
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FPCA Example 3
n = 50 functions, {fi = ui ∗ f0 + σWi}, f0 ≡ N (0.5,0.01), ui ∼ U(0,5),
σ = 5
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FPCA Example 3...
n = 50 functions, {fi = ui ∗ f0 + σWi}, f0 ≡ N (0.5,0.01), ,
ui ∼ U(0,5), σ = 5
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FPCA Example 4
n = 21 functions, fi (t) = zi,1e−(t−1.5)2/2 + zi,2e−(t+1.5)2/2,
zi,1, zi,2 ∼ N (0, (0.25)2), i = 1,2, . . . ,21
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FPCA Example 4...
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FPCA: Height Growth Data

n = 39 functions, Growth rates
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FPCA: Height Growth Data.
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FPCA: Data With Phase Variability

n = 50 functions, fi (t) = f0(γi (t)), γis are random time warps.
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FPCA: Data With Phase Variability
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Functional Linear Regression
Regression problem where f ∈ L2 is a predictor and y ∈ R is a
response.
Consider the classical multivariate linear regression problem
where x ∈ Rd is a predictor and y ∈ R is a response. The linear
regression model is:

yi = 〈β, xi〉+ εi , i = 1,2, . . . ,n

and εi ∈ R is the measurement error. In the matrix form,
y = Xβ + ε. The solution is:

β̂ = (X T X )−1X T y, ŷ = X β̂

One of the ways to evaluate the model is: define

SST =
n∑

i=1

(yi − ȳ)2, SSE =
2∑

i=1

(yi − ŷi )
2

Then, the coefficient of determination is given by:

R2 = 1− SSE
SST

.



Functional Linear Regression

Returning to functional regression, for β, fi ∈ L2, the model is
given by:

yi = 〈β, fi〉+ εi , i = 1,2, . . . ,n,

Assume that β =
∑J

j=1 cjbj . Then,

〈β, fi〉 =
J∑

j=1

cj
〈
bj , fi

〉
≡

J∑
j=1

cjXi,j

where Xi,j =
〈
bj , fi

〉
. Now, the problem is again multivariate linear

regression. Once we have ĉ, then form β̂ =
∑J

j=1 ĉjbj .
One can make it nonlinear using the model:

yi = g(〈β, fi〉) + εi , i = 1,2, . . . ,n,

where g : R→ R. This is also called a single-index model.



Functional Regression

Given training data {(yi , fi ) ∈ R× L2}
Single-index model estimation:

Perform FPCA and compute the basis set B = {b1, b2, . . . , bJ}.
Compute Xi,j = 〈bj , fi〉.
Using X and y, estimate the linear coefficient ĉ as the least
squares solution, and form β̂ =

∑J
j=1 ĉjbj .

Form the predicted response values ŷi =
〈
β̂, fi
〉

, i = 1, 2, . . . , n.
Then, estimate g using curve fitting on the data {(ŷi , yi )}. This
requires choosing the order of the polynomial.

Evaluation model performance using the coefficient of
determination is given by:

R2 = 1− SSE
SST

.



Functional Regression: Example 1
Tecator Dataset:
Predictors are 100 channel spectrum of absorbances
Responses are contents of moisture (water).

0 0.2 0.4 0.6 0.8 1

2

2.5

3

3.5

4

4.5

5

5.5

0 50 100 150 200 250

0

10

20

30

40

50

{fi} {yi}

0 50 100 150 200 250

0

10

20

30

40

50

60
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Coeff of determination: [0.9508, 0.9701, 0.9710, 0.9710, 0.9713]
Degree of polynomial: (d = 1, . . . ,5)



Functional Regression: Example 2
Tecator Dataset:
Predictors are 100 channel spectrum of absorbances
Responses are contents of fat.
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Functional Regression: Example 3
Tecator Dataset:
Predictors are 100 channel spectrum of absorbances
Responses are contents of protein
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Generative Models for Functional Data

Returning to the underlying model:

fi (t) = µ(t) +
∞∑
j=1

ci,jbj (t) ,

where µ, {bj} are deterministic unknown and {ci,j}s are random.

Assume ci,j ∼ N (0, σ2
j ). Then we can estimate: (µ̂, {b̂j}, {σ̂2

j })
using maximum likelihood.
MLE: FPCA as earlier to get µ̂ and {b̂j}. Then, compute the
sample variance of {c,̇j} for each j to get σ̂2

j .
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Generative Models: Example 1
Simulate using the model:

f̃i = µ̂+
J∑

j=1

ci,jbj , ci,j ∼ N (0, σ̂2
j )
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Generative Models: Example 2
Simulate using the model:

f̃i = µ̂+
J∑

j=1

ci,jbj , ci,j ∼ N (0, σ̂2
j )
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Generative Models: Example 3
Simulate using the model:

f̃i = µ̂+
J∑

j=1

ci,jbj , ci,j ∼ N (0, σ̂2
j )
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Generative Models: Example 4
Simulate using the model:

f̃i = µ̂+
J∑

j=1

ci,jbj , ci,j ∼ N (0, σ̂2
j )
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Curve Fitting: Least Squares

Problem: Given discrete data {(ti , yi ) ∈ [0,T ]× R}, estimate the
function f over [0,T ].
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Challenges:
Piecewise linear often leads to rough estimates.
Data can be noisy, sparse, and parts may be missing.
What should be the criterion for estimating f?



Curve Fitting: Least Squares

Least Squares: Curve fitting using an orthogonal basis
Solve for:

f̂ = argmin
f∈F

m∑
i=1

(yi − f (ti ))2 .

Represent the unknown function f (t) =
∑J

j=1 cjbj (t), and solve for
the coefficients instead:

ĉ = argmin
c∈RJ

m∑
i=1

yi −
J∑

j=1

cjbj (ti )

2

= argmin
c∈RK

(
(y − Bc)T (y − Bc)

)
= (BT B)−1BT y



Curve Fitting: Penalized Least Squares

One would like to control the roughness (or smoothness) of the
solution. There are two ways to do that.
First: If the lower basis elements b1,b2, . . . ,bJ are smoother,
then choosing a lower J increases smoothness.
Second: Penalized Least Squares

Define an explicit roughness penalty on f : R(f ). Examples:∫
D ‖ḟ‖

2dt ,
∫

D ‖f̈‖
2dt , etc.

Include the roughness penalty in the estimation:

f̂ = argmin
f∈F

(
m∑

i=1

(yi − f (ti ))2 + λR(f )

)

λ > 0 controls the smoothness of the solution.
Using a basis B, the penalized estimator becomes:

ĉ = argmin
c∈RK

 m∑
i=1

yi −
J∑

j=1

cjbj (ti )

2

+ λR(f )

 .



Curve Fitting: Example

Evaluating second order penalty:

R(f ) =

∫ 1

0
(f̈ (t))2 dt =

∫ 1

0
(
∑

k

ck b̈k (t))(
∑

j

cj b̈j (t)) dt

=
∑

k

∑
j

(
cjck

∫ 1

0
b̈k (t)b̈j (t) dt

)
= cT Rc ,

where Rk,j =
∫ 1

0 b̈k (t)b̈j (t) dt .
Penalized least squares:

ĉ = argmin
c∈RK

(
(y − Bc)T (y − Bc) + λcT Rc

)
= (BT B + λR)−1BT y

Choice of λ is tricky – one often uses some cross-validation idea.



Curve Fitting: Example

Using Fourier basis: fixed λ
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Curve Fitting: Example

Using Fourier basis: fix J = 21, change λ

0 20 40 60 80 100

2.5

3

3.5

0 20 40 60 80 100

2.5

3

3.5

0 20 40 60 80 100

2.5

3

3.5

0 20 40 60 80 100

2.5

3

3.5

λ = 10−6 λ = 10−5 λ = 10−4 λ = 10−3

Penalized least-square function estimation

Once can control smoothness using both J and λ.
Also, built-in commands:
options =
fitoptions(’Method’,’Smooth’,’SmoothingParam’,0.00001);
f = fit(t’, y’, ’smoothingspline’,options);
plot(t,f(t),’k’,t,y,’*’,’LineWidth’,2);



Summary

Some of the tasks we can do now:
Given discrete time points over an interval, we can fit a smooth
function (curve) to the data.
Given two such observations:

(t1,y1) = {(t1
i , y

1
i |i = 1,2, . . . ,n}, (t2,y2) = {(t2

i , y
2
i |i = 1,2, . . . ,m},

we can fit functions f 1 and f 2, and compare them ‖f 1 − f 2‖p.
Given several observations, we can compute the mean and the
covariance of the fitted functions.
We can perform fPCA and study the modes of variability.
We can impose some statistical models on the function space
using finite-dimensional approximations.
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Nonlinear Manifolds

What are nonlinear manifolds?
Nonlinear manifolds are spaces that are not vector spaces:

ax + by /∈ M, even if x , y ∈ M, a,b ∈ R

The usual statistics does not apply – can’t add of subtract. Can’t
compute standard mean, covariance, PCA, etc.
There are solutions to all these items but adapted to the
geometry of the underlying space.



Differentiable Manifolds

Examples of Linear and Nonlinear Manifolds:
Finite Dimensional

Euclidean vector space Rn (linear)
Unit Sphere Sn ⊂ Rn+1 (nonlinear)
Set of non-singular matrices GL(n): (nonlinear)

GL(n) = {A ∈ Rn×n| det(A) 6= 0}

Some subsets of GL(n):
Orthogonal: O(n) = {O ∈ GL(n)|OT O = I}.
Special Orthogonal SO(n) = {O ∈ GL(n)|OT O = I, det(O) = +1}
Special Linear SL(n) = {A ∈ GL(n)| det(A) = +1}

Infinite Dimensional
F : the set of smooth functions of [0, 1]. (linear)
L2, the set of square-integrable functions. (linear)
Unit Hilbert sphere: S∞ = {f ∈ L2 | ‖f‖2 = 1}. (nonlinear)
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Tangent Spaces

Tangent Vector: Let α : (−ε, ε)→ M be a C1 curve such that
α(0) = p ∈ M. Then, α̇(0) is called a vector tangent to M at p.

Tangent Space: For a point p ∈ M, the set of all vectors tangent
to M at p is Tp(M).

Tangent space is a vector space, suitable for statistical analysis.
dim(Tp(M)) = dim(M) (in all our examples).
We will sometime denote vectors tangent to M at point p by δp1,
δp2, . . . (notation from physics).



Tangent Spaces

Examples of Tp(M):
For vector spaces, the tangent spaces are the spaces
themselves.

For any x ∈ Rn, Tx (Rn) = Rn.
For any f ∈ L2, Tf (L2) = L2.

For matrix manifolds:
Set of non-singular matrices GL(n): TA(GL(n)) = Rn×n

Set of special orthogonal matrices SO(n):
TO(SO(n)) = {M ∈ Rn×n | MT = −M}
Set of special linear matrices SL(n):
TA(SO(n)) = {M ∈ Rn×n |Tr(M) = 0}

For any p ∈ Sn: Tp(Sn) = {v ∈ Rn+1|∑n+1
i pivi = 0}.

For any f ∈ S∞: Tf (S∞) = {h ∈ L2|
∫

D(h(t) · f (t)) dt = 0}.



Exponential Map and Its Inverse

Exponential Map: For any p ∈ M and v ∈ Tp(M),
expp : Tp(M)→ M. For a unit sphere:

expp(v) = cos(|v |)p + sin(|v |) v
|v |

Inverse Exponential Map: For any p,q ∈ M, exp−1
p : M → Tp(M).

For a unit sphere:

exp−1
p (q) =

θ

sin(θ)
(q − cos(θ)p), where θ = cos−1(〈p,q〉)

The tangent vector v = exp−1
p (q) is called the shooting vector

from p to q.
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Definition: Riemannian Metric

Riemannian Metric:
A Riemannian metric on a differentiable
manifold M is a map Φ that smoothly as-
sociates to each point p ∈ M a symmetric,
bilinear, positive definite form on the tan-
gent space Tp(M).

v1

v2

p 

It is an inner product between tangent vectors (at the same p).
For any v1 = δp1, v2 = δp2 ∈ Tp(M), we often use:

Φ(δp1, δp2) = 〈〈δp1, δp2〉〉p .



Examples: Riemannian Metric

Examples of Riemannian Manifolds:

Rn with Euclidean inner product: for δx1, δx2 ∈ Tx (Rn) = Rn,
〈〈δx1, δx2〉〉x = δxT

1 δx2.

Sn with Euclidean inner product: for δp1, δp2 ∈ Tp(Sn),
〈〈δp1, δp2〉〉p = δpT

1 δp2.

L2 with L2 inner product: for any δf1, δf2 ∈ F ,
〈〈δf1, δf2〉〉f =

∫ 1
0 〈δf1(t), δf2(t)〉dt .



Path Length, Geodesic, Geodesic Distance

Path Length: Let α : [0,1]→ M be a C1 curve. Then, the length
of this curve is given by:

L[α] =

∫ 1

0

√
〈α̇(t), α̇(t)〉α(t) dt .

This depends on the definition of the Rie-
mannian metric.

Geodesic: For any two points p,q ∈ M, find a C1 curve with the
shortest path length.

α̂ = arginf
α:[0,1]→M|α(0)=p,α(1)=q

L[α] .

α̂ is called a geodesic between p and q. Sometimes local
minimizers of L are also called geodesics.



Geodesic Examples

Known expressions for some common manifolds.

Rn: Geodesics under the Euclidean metric are straight lines.
Sn: Geodesics under the Euclidean metric are arcs on great
circles.

v 

p 

q 

α(t) =
1

sin(ϑ)
(sin(ϑ(1− t))p1 + sin(ϑt)p2), cos(ϑ) = 〈p1,p2〉

Same for Hilbert sphere.
And so on.... known expressions for several manifolds.



Geodesic Computations
Numerical solutions:

Path-Straightening Algorithm: Solve the following optimization
problem

α̂ = arginf
α:[0,1]→M|α(0)=p,α(1)=q

(∫ 1

0

√
〈α̇(t), α̇(t)〉α(t) dt

)

= arginf
α:[0,1]→M|α(0)=p,α(1)=q

(∫ 1

0
〈α̇(t), α̇(t)〉α(t) dt

)

Gradient of this energy is often available in closed form. Setting
gradient to zero leads to the Euler-Largange equation or
geodesic equation.
Gradient updates are akin to straightening the path iteratively.



Geodesic Computations

Numerical solutions:

Shooting Algorithm: Find the smallest shooting vector that leads
from point p to point q in unit time.
Find a tangent vector v ∈ Tp(M) such that:

1 expp(v) = q, and
2 ‖v‖ is the smallest amongst all such vectors.

Form an objective function H[v ] = ‖expp(v)− q‖2.
Solve for:

v̂ = arginf
v∈Tp(M)

H[v ] .

M

p2

p1

Initial Shooting

Direction

Final Shooting

Direction

H

v x
1
 = (1,0,0)

x
2
 = (0,0,1)

x
1
 = (1,0,0)

x
2
 = (0,0,1)

x
1
 = (1,0,0)

x
2
 = (0,0,1)



Geodesic Distance

The length of the shortest geodesic between any two points is the
Riemannian distance between them:

d(p,q) = L[α̂], α̂ = argmin
α:[0,1]→M|α(0)=p,α(1)=q

L[α]

Examples:
Rn with the Euclidean metric: d(p,q) = ‖p − q‖.
Sn with the Euclidean metric: d(p,q) = cos−1(〈p,q〉).
L2 with L2 metric: d(f1, f2) = ‖f1 − f2‖.
Hilbert sphere with L2 metric: d(f1, f2) = cos−1(〈f1, f2〉).
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Fréchet/Karcher Mean

Let d(·, ·) denote a distance on a Riemannian manifold M.
For a probability distribution P on M, define the mean to be:

µ = argmin
p∈M

∫

M
d(p,q)2P(q)dq.

Sample mean: given points {q1,q2, . . . ,qn} on M, the sample
mean is defined as: µ̂ = argminp∈M

∑n
i=1 d(p,qi )

2.
Algorithm: Gradient-based iteration

1 Initialize the mean µ.
2 Compute the shooting vectors:

vi = exp−1
µ (qi ), and the average:

v̄ = 1
n

∑n
i=1 vi .

3 Update the estimate: µ→ expµ(εv̄). If
‖v̄‖ is small, then stop.



Fréchet/Karcher Mean

Sample mean on a circle
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Probability Density Functions

Consider the set of positive probability density functions on the
interval [0,1]:

P = {g : [0,1] 7→ R+|
∫ 1

0
g(t)dt = 1} .

P is a Banach manifold.
The tangent space Tg(P) is given by:

Tg(P) = {δg ∈ L1([0,1],R)|
∫ 1

0
δg(t)dt = 0} .

Nonparametric Fisher-Rao Riemannian metric: For a g ∈ P and
vectors δg1, δg2 ∈ Tg(P), the Fisher-Rao metric is defined to be:

〈〈δg1, δg2〉〉g =

∫ 1

0
δg1(t)δg2(t)

1
g(t)

dt .

Fisher-Rao geodesic distance: Looks daunting. Why?



Probability Density Functions

Things simplify if we transform the pdf.
Define a simple square-root transformation q(t) = +

√
g(t). Note

that q lies on a unit Hilbert sphere because
‖q‖2 =

∫ 1
0 q(t)2dt =

∫ 1
0 g(t) = 1.

The Fisher-Rao Riemannian metric for probability densities
transforms to the L2 metric under the square-root mapping, up to
a constant.

〈〈δg1, δg2〉〉g = 4 〈δq1, δq2〉
Using the fact that δq(t) = 1

2
√

g(t)
δg(t).

Fisher-Rao distance: d(g1,g2) = cos−1
(∫ 1

0
√

g1(t)
√

g2(t)dt
)
.

This is the arc length, an intrinsic distance.

Hellinger Distance: dh(g1,g2) =
∫ 1

0 ‖
√

g1(t)−
√

g2(t)‖2dt . This
is the chord length, an extrinsic distance.



Fisher-Rao Geodesics: Examples
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The computation is performed in S∞ and the results brought back
using g(t) = q(t)2.



Means of PDFs

ĝ = inf
g∈P

(
n∑

i=1

dFR(g,gi )
2

)
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The computation is performed in S+
∞ and the results brought back

using g(t) = q(t)2.



Time Warping Functions

Consider the set:

Γ = {γ : [0,1]→ [0,1]|γ is a diffeomorphism γ(0) = 0, γ(1) = 1} .

γ̇ > 0.
Γ is a nonlinear manifold.
The tangent space Tγ(Γ) is given by:

Tγid (Γ) = {δγ ∈ F|δγ is smooth, δγ(0) = 0, δγ(1) = 0} .

Nonparametric Fisher-Rao Riemannian metric: For a γ ∈ Γ and
vectors δγ1, δγ2 ∈ Tγ(Γ), the Fisher-Rao metric is defined to be:

〈〈δγ1, δγ2〉〉γ =

∫ 1

0

˙δγ1(t) ˙δγ2(t)
1
γ̇(t)

dt .

Fisher-Rao geodesic distance: Looks daunting again.



Time Warping Functions

Things simplify if we transform the warping functions.
Define a simple square-root transformation q(t) = +

√
γ̇(t). Note

that q lies on a unit Hilbert sphere because
‖q‖2 =

∫ 1
0 q(t)2dt =

∫ 1
0 γ̇(t) = γ(1)− γ(0) = 1.

The Fisher-Rao Riemannian metric for probability densities
transforms to the L2 metric under the square-root mapping, up to
a constant.

〈〈δγ1, δγ2〉〉γ = 4 〈δq1, δq2〉
Geodesic is the arc on the unit Hilbert sphere.

Fisher-Rao distance: d(γ1, γ2) = cos−1
(∫ 1

0

√
γ̇1(t)

√
γ̇2(t)dt

)
.

This is the arc length, an intrinsic distance.



Time Warping Functions: Sample Means

γ̂ = inf
γ∈Γ

(
n∑

i=1

dFR(γ, γi )
2

)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The computation is performed in S+
∞ and the results brought back

using γ(t) =
∫ t

0 q(s)2ds.



Fisher-Rao Metric and Transformations

d

dt

√
·

Γ P S∞

γ g q

g = γ̇

q =
√

g =
√

γ̇

Isometric mappings
Fisher-Rao for CDFs Fisher-Rao for PDFs Fisher-Rao for Half Densities
∫ 1

0
˙δγ1(t) ˙δγ2(t) 1

γ̇(t) dt
∫ 1

0 δg1(t)δg2(t) 1
g(t) dt

∫ 1
0 δq1(t)δq2(t) dt
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Groups

Group: A group G is a set having an associative binary
operations, denoted by ·, such that:

there is an identity element e ∈ G (e · g = g · e = g for all g ∈ G.
for every g ∈ G, there is an inverse g−1 (g · g−1 = e).

Examples:
Translation Group: Rn with group operation being identity
Scaling Group: R+ with multiplication
Rotation Group: SO(n) with matrix multiplication
Diffeomorphism Group: Define

Γ = {γ : [0, 1]→ [0, 1]|γ(0) = 0, γ(1) = 1, γ is a diffeo} .

Γ is a group with composition: γ1 ◦ γ2 ∈ Γ. γid (t) = t is the identity
element. For every γ ∈ Γ, there exists a unique γ−1 such that
γ ◦ γ−1 = γid .
Sn for n ≥ 2 is not a group.



Group Actions on Manifolds

Group Action on a Manifold:
Given a manifold M and a group G, the (left) group action of G
on M is defined to be a map: G ×M → M, written as (g,p) such
that:

(g1, (g2, p)) = (g1 · g2, p), for all g1, g2,∈ G, p ∈ M.
(e, p) = p, ∀p ∈ M.

Examples:
Translation Group: Rn with additions, M = Rn:
Group action (y , x) = (x + y)

Rotation Group: SO(n) with matrix mulitplication, M = Rn:
Group action (O, x) = Ox

Scaling Group: R+ with multiplication, M = Rn:
Group action (a, x) : ax .



Time Warping

An important group action for functional and shape data analysis.
Diffeo Group: Γ with compositions,
M = F , the set of smooth functions on [0,1].

Group action: (f , γ) = f ◦ γ, time warping!
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f {γi} {f ◦ γi}
((f , γ1), γ2) = (f , γ1 ◦ γ2)
(f , γid ) = f .

This action moves the values of f horizontally, not vertically. f (t)
moves from t to γ(t).



Group Action & Metric Invariance

Do the group actions preserve metrics on the manifold? That is:

dm(p1,p2) = dm((g,p1), (g,p2))?

Translation group action on Rn: Yes!

‖x1 − x2‖ = ‖(x1 + y)− (x2 + y)‖, ∀y , x1, x2 ∈ Rn

Rotation group action on Rn: Yes!

‖x1 − x2‖ = ‖Ox1 −Ox2‖, ∀x1, x2 ∈ Rn, O ∈ SO(n)

Scaling group action on Rn: No

‖x1 − x2‖ 6= ‖ax1 − ax2‖, ∀x1, x2 ∈ Rn, a ∈ R+

Time-Warping group action on L2: No

‖f1 − f2‖ 6= ‖f1 ◦ γ − f2 ◦ γ‖, ∀x1, x2 ∈ Rn, γ ∈ Γ



Table of Contents

Differential Geometry:
Nonlinear manifolds
Tangent Spaces, Exponential map and its inverse
Riemannian metric, path length, and geodesics
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Orbits Under Group Actions

Orbits: For a group G acting on a manifold M, and a point p ∈ M,
the orbit of p:

[p] = {(g,p)|g ∈ G}
If p1,p2 ∈ [p], then there exists a g ∈ G s. t. p2 = (g,p1).
Examples:

Translation Group: Rn with additions, M = Rn: [x ] = Rn.

Rotation Group: SO(n) with matrix mulitplication, M = Rn: [x ] is a
sphere with radius ‖x‖

Scaling Group: R+ with multiplication, M = Rn: [x ] = a half-ray
almost reaching origin

Time Warping Group Γ: [f ] is the set of all possible time warpings
of f ∈ F .



Quotient Spaces

Membership of an orbit is an equivalence relation. Orbits are
either equal or disjoint. They partition the original space M.

Quotient Space M/G

The set of all orbits is called the quotient space of M modulo G.

M/G = {[p]| ∈ p ∈ M} .



Quotient Metric

One can inherit a metric from the the manifold M to its quotient
space M/G as follows:

Quotient Metric
Let dm be a distance on M such that:

1 the action of G on M is by isometry under dm, and
2 the orbits of G are closed sets,

then:

dm/g([p], [q]) = inf
g∈G

dm(p, (g,q)) = inf
g∈G

dm((g,p),q)

An important requirement is that:
Group action is by isometry: dm(p,q) = dm((g,p), (g,q)).
This forms the basis for all of shape analysis.



Functional and Shape Data Analysis

Well quoted in probability:
All (most) probabilities of interest are conditional !

In functional and shape data analysis:
All (most) spaces of interest are quotient spaces !


	Introduction
	What is Functional Data Aanalysis?
	What is Shape Data Analysis

	Motivation for FSDA
	Discrete Versus Continuous
	Background1-HilbertSpace.pdf
	Function Spaces
	Functional Principal Component Analysis
	Functional Regression Model
	Generative Models for Functional Data
	Function Estimation: Curve Fitting

	Background2-GeometryAlgebra.pdf
	Groups, Group Actions on Manifolds


