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Foreword

This handbook will treat the topics of multiple comparisons, simultaneous
and selective inference from a variety of different perspectives. The handbook
will be useful for (i) researchers, (ii) students / lecturers, (iii) practitioners.
The need for such a systematic treatment of the field originates from the
relevance of multiple comparisons in many applications (medicine, industry,
economics), and from the diversity of approaches and developments, which
shall be described here in a coherent manner.
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Preface

This handbook has three parts. The first part deals with general methodology,
the second part with applications in medicine, and the third part with further
topics.
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1.4.4 Controlling FWER may be too simplistic for
primary-secondary endpoint problems . . . . . . . . . . . . . . . . . . 37
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Partitioning is a fundamental principle in multiple comparisons. In this chap-
ter, we discuss and illustrate three applications of the partitioning principle
corresponding to three motivations.

1.1 Motivations for Partitioning

Partitioning, as the name implies, refers to a partitioning of the entire param-
eter space.

Some scientific problems naturally partition the parameter space. In com-
paring seven treatments for a disease, for example, if treatment one is the
best, then treatment two is not; if treatment three is the best, then treatment
seven is not, and so forth. Such natural partitioning provides the first of the
three motivations listed below for developing the Partitioning Principle (PP).

Section 1.2 Some scientific problems naturally partition.

Section 1.3 By providing associated confidence sets, partitioning can reduce
multiplicity adjustment while guaranteeing control of the directional error
rate.

Section 1.4 Partitioning can formulate multiple testing problems so that
decision-making automatically follow desirable paths.

Both the Partitioning Principle and the Closed Testing Principle can con-
trol the familywise error rate (FWER) in testing multiple hypotheses, while
keeping multiplicity adjustment only to the extent that it is needed. (See
Chapter 1 of this Handbook for descriptions of the Closed Testing Principle
and FWER.) A second motivation for PP, stated in both Takeuchi (1973,
2010) and in Stefansson et al. (1988), is to be able to derive confidence sets
associated with multiple tests. A motivation for that, in turn, is making de-
cisions based on confidence sets naturally controls the directional error rate.
In contrast, we will cite examples in Section 1.3.5 of multiple tests that con-
trol the FWER in testing equality null hypotheses but do not control the
directional error rate, tests without clearly associated confidence sets because
the union of their null hypotheses make up only a (small) part of the entire
parameter space.

A third motivation for PP is that some decision-making processes natu-
rally have paths. To assess the efficacy of a medicine, in some (but not all)
therapeutic areas it is natural to test doses from high to low in that order.
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As another example, efficacy in the primary endpoint would be tested before
the secondary endpoint, because efficacy in the secondary endpoint is relevant
only if there is efficacy in the primary endpoint. While gate-keeping methods
impose rules on closed tests to keep decision-making on paths, the Parti-
tioning Principle can transparently partition the parameter space to channel
decision-making onto desirable decision paths.

1.2 Multiple Comparisons with the Best: A Scientific
Problem Which Naturally Partitions

Whether a drug starts as an active compound and gets metabolized and elim-
inated from the body, or starts as an inactive compound and gets metabolized
to an active form, patients in subgroups separated by polymorphism of a gene
metabolizing the drug might derive differential benefit from that drug. So one
might wonder which subgroup or subgroups of patients derive maximum ben-
efit or practically maximum benefit from the drug, and which other subgroups
do not.

Most drugs are “soft drugs”, active compounds that, after performing their
activity, are metabolized into inactive form that is then excreted from the
body. Other drugs, such as tamoxifen and clopidogrel, are “pro-drugs”, inac-
tive compounds needing to be metabolized to their active form.

The cytochrome P450 family of enzymes (abbreviated as CYP) is asso-
ciated with the metabolism of many drugs (Nebert 2002). Perhaps the two
most prominent genes in the P450 family are 2D6 and 2C19. Efficacy of some
high profile drugs have been reported to be impacted by polymorphism in 2D6
and 2C19. For example, Schroth et al. (2009), Hoskins, Carey and McLeod
(2009), and Abraham et al. (2010) discuss differential efficacy of tamoxifen for
patients with variants of the CYP2D6 gene. Mega et al. (2010), Paré et al.
(2010), and Holmes et al. (2011) compare efficacy of Plavix (clopidogrel) for
patients with variants of the CYP2C19 gene. This is not surprising, because
patients in different subpopulations defined by such polymorphisms will not
metabolize the drug at exactly the same rate and therefore will not derive
exactly the same benefit from that drug. As John W. Tukey (1992) said:

Our experience with the real world teaches us – if we are willing
learners – that, provided we measure to enough decimal places, no two
‘treatments’ ever have identically the same long-run value.

Polymorphisms in P450 genes are annotated by the so-called star-allele
nomenclature. CYP2D6 has more than 90 alleles. CYP2C19 is somewhat less
polymorphic. Its major alleles are *1, *2, *3, and *17, with *1 being normal
(wild-type), *2 and *3 being loss-of-function, and *17 being gain-of-function
alleles.
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Paré et al. (2010) obtained 5059 samples from a randomized, double-blind,
placebo controlled trial with 12562 patients and studied the effect of CYP2C19
genotype on the efficacy of clopidogrel as measured by cardiovascular out-
comes. Paré et al. (2010) classified the population into five metabolizer sub-
groups according to their CYP2C19 genotype, as shown in Table 1.1. However,
one can easily imagine classifying the population into finer subgroups, sepa-
rating *1/*17 from *17/*17 for example, and separating *2/*17 from *3/*17.

Metabolizer Alleles

Poor *2/*2 or *2/*3 or *3/*3

Intermediate *1/*2 or *1/*3

Extensive *1/*1

Ultra *1/*17 or *17/*17

Unknown *2/*17 or *3/*17

TABLE 1.1: Metabolizer Subgroups Defined by CYP2C19 Polymorphism

So let us say we have k patient subpopulations. Identifying the following
three kinds of subgroups will be very useful.

S> The subgroup deriving the maximum efficacy from the drug

S< Subgroups deriving less than maximum efficacy from the drug

Sδ Subgroups deriving practically the maximum efficacy

With finite amount of data, we cannot identify S>, S<, and Sδ with 100%
confidence. But we can certainly identify these subgroups with 100(1 − α)%
confidence (in a confidence sets sense). One possibility is to compare every
subgroup with every other subgroup, i.e., do an all-pairwise comparisons,
and deduce information about S>, S<, Sδ. However, since comparisons among
bad treatments are not of primary interest, one might ask whether confident
S>, S<, Sδ subgroup identifications is possible without deducing the informa-
tion from all pairwise comparisons. Surprisingly, the answer is “yes”, to a large
extent.

Let us call the subgroup that receives the most efficacy the “best” sub-
group, and think about testing the hypotheses

H01: The 1st subgroup is the best
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H02: The 2nd subgroup is the best

...

H0k: The kth subgroup is the best

There is only one best subgroup. If the 1st group receives the most efficacy,
then the 2nd group does not, and so forth. So exactly one of the hypotheses
is true, all others are false.

Therefore, one cannot make more than one type-I error in testing these k
null hypotheses, and no multiplicity adjustment is needed for testing these k
hypotheses simultaneously. That is, if each of H0i, i = 1, . . . , k, is tested at
level-α, FWER is controlled at level-α.

However, testing the ith hypothesis involves comparing the ith subgroup
with the other k−1 subgroups. And the k−1 comparisons are 1-sided, because
no subgroup can be better than the “best”. So, there is a 1-sided multiplicity
adjustment of k− 1 within each of the k tests. It is less than the the k(k− 1)
multiplicity adjustment for 1-sided all-pairwise comparisons, or the k(k−1)/2
multiplicity adjustment for 2-sided all-pairwise comparisons.

Note that the null hypotheses H0i, i = 1, . . . , k, essentially partition the
parameter space. This formulation of multiple comparisons is called Multiple
Comparisons with the Best (MCB). The MCB formulation is convenient for
us to explain how confidence sets for multiple comparisons can be constructed.

1.2.1 Confidence sets associated with multiple tests

Let Θ denote the parameter space. The connection between a family of tests for
a parameter and a confidence set for that parameter is given by the following
theorem.

Theorem 1.1 (Lehmann 1986, p. 90, Casella and Berger 2001, p. 421)

Let Θ denote the parameter space and let θ̂ be a random vector whose distri-
bution depends on θ ∈ Θ. If {φθ(θ̂) : θ ∈ Θ} is a family of tests such that

Pθ{φθ(θ̂) = 0} ≥ 1− α

for each θ ∈ Θ, then

C(θ̂) = {θ : φθ(θ̂) = 0,θ ∈ Θ}

is a level 100(1− α)% confidence set for θ.

One of the earliest use of this correspondence is by Fieller (1964), to get a
confidence interval for the ratio of two Normal means. His size-α test for each
hypothesized value of the true ratio of means is a clever linear combination of
the estimated means, and these tests are then pivoted to obtain the confidence
set.
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The key point to note is that in order to obtain a confidence set, there
needs to be a test for each parameter value of the parameter space, that is,
the family of tests should partition the parameter space. Note that if each test
is actually of size α, Pθ{φθ(θ̂) = 0} = 1− α, then the confidence set C(θ̂) is
exact, that is, it has confidence level exactly equal to 1−α. Depending on the
choice of the family of tests, the confidence set may or may not be convex.

With Θ denoting the parameter space, let X denote the sample space.
Given x ∈ X , once the family of tests have been executed, confidence bounds
for each parameter can be deduced by calculating its minimum and maximum
values in the confidence set.

Lemma 1.1 (Projection-Lemma) Suppose C(x) is a level 1−α confidence
set for the parameter θ = (θ1, . . . , θp) ∈ Θ. Given x ∈ X , define, for i ∈
{1, . . . , p},

Ui(x) = sup{η : ∃ θ ∈ C(x) : θi = η},
Li(x) = inf{η : ∃ θ ∈ C(x) : θi = η}.

Then Di(x) = [Li(x), Ui(x)], i = 1, . . . , p, constitute level (1−α) simultaneous
confidence intervals for θ = (θ1, . . . , θp).

Note that even if the confidence set C(x) is exact, the simultaneous confidence
intervals (D1, . . . , Dp) may be conservative, that is, their confidence level may
be greater than 1−α. The confidence set D = D1×D2× . . .×Dp is of course
convex.

Now consider a partition Θ1, . . . ,ΘM of the parameter space, that is,

M⋃
m=1

Θm = Θ

and
Θi ∩Θj = ∅ for all i 6= j.

If parameters in each Θm is tested by a different family of tests, then these
families of tests can be pivoted separately in eacn Θm and then combined to
yield a confidence set for θ, leading naturally to a Partitioning Principle for
multiple comparisons confidence set construction. Letting C1−α(Θ) denote all
possible level 1− α confidence sets C(x) for the parameter θ = (θ1, . . . , θp) ∈
Θ, the following Partition-Projection corollary gives a formal guideline for
calculating the final confidence bounds.

Corollary 1.1 (Partition-Projection Corollary) Let {Θ1, . . . ,ΘM} be a
partition of the parameter space Θ. For each m ∈ {1, . . . ,M}, let C̃m(x) be a
level 1 − α confidence set for θ. Given x ∈ X , i ∈ {1, . . . , p}, m ∈ M+(x) =
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{m ∈M : C̃m(x) 6= ∅}, define

Uim(x) = sup{η : ∃ θ ∈ C̃m(x) : θi = η},
Lim(x) = inf{η : ∃ θ ∈ C̃m(x) : θi = η},
Ui(x) = sup

m∈M+(x)

Uim(x),

Li(x) = inf
m∈M+(x)

Lim(x),

then (D1, . . . , Dp) with Di(x) = [Li(x), Ui(x)] constitute level (1 − α) simul-
taneous confidence intervals for θ = (θ1, . . . , θp).

When the family of distributions is a location family of distributions, one
can start with one or more tests for a particular hypothesized parameter value
and employ equivariance to generate the family of tests for the entire param-
eter space. In the presence of an unknown (nuisance) scale parameter, usually
this hypothesized parameter value is chosen so that a statistic whose distribu-
tion depends on neither the location parameters nor the scale parameter (i.e.,
a pivotal quantity) is available. Pivoting within each subspace then taking
their union gives the confidence set.

Theorem 1.2 (Pivoting-Partitioning Confidence Set Construction)

Suppose the distribution of θ̂−θ does not depend on θ = (θ1, . . . , θp). Consider

a partition Θ1, . . . ,ΘM of the parameter space. If each φm(θ̂) = φm(θ̂1, . . . , θ̂p)
is a level-α test for

H0 : θ1 = · · · = θp = 0

with acceptance region Am,m = 1, . . . ,M , then a level 100(1−α)% confidence
region for θ = (θ1, . . . , θp) is

C(θ̂1, . . . , θ̂p) =

M⋃
m=1

(
{−θ + θ̂ : θ ∈ Am} ∩Θm

)
.

Proof The test

φ(θ̂ − θ0) = φm(θ̂1 − θ01, . . . , θ̂p − θ0p)

is a level-α test for
Hθ0 : θ1 = θ01, . . . , θp = θ0p.

Therefore, by Corollary 1.1, a level 100(1− α)% confidence set for θ is

C(θ̂) = {θ0 : Hθ0 is accepted } (1.1)

=

M⋃
m=1

{θ0 : θ̂ − θ0 ∈ Am and θ0 ∈ Θm} (1.2)

=

M⋃
m=1

(
{−θ + θ̂ : θ ∈ Am} ∩Θm

)
. (1.3)
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Stefansson et al. (1988) used this Partitioning Principle to construct a
confidence set for the step-down version of Dunnett’s method, as well as MCB
confidence sets which we will show in Section 1.2.2. (See the introductory
Chapter 1 for a general description of step-wise methods.) Other examples of
uses of the Partitioning Principle to construct multiple comparison confidence
sets include Hayter and Hsu (1994), Finner (1994), Finner and Strassburger
(2007), and Strassburger and Bretz (2008).

1.2.2 Partition confidence set for MCB

Suppose that under the ith treatment a random sample Yi1, Yi2, . . . , Yin of size
n is taken, where the observations between the treatments are independent.
Then under the usual normality and equality of variances assumptions, we
have the balanced one-way model (1.4)

Yia = µi + εia, i = 1, . . . , k, a = 1, . . . , n, (1.4)

where µi is the effect of the ith treatment, i = 1, . . . , k, and ε11, . . . , εkn are
i.i.d. normal errors with mean 0 and unknown variance σ2. We use the notation

µ̂i = Ȳi =

n∑
a=1

Yia/n,

σ̂2 = MSE =

k∑
i=1

n∑
a=1

(Yia − Ȳi)2/[k(n− 1)]

for the sample means and the pooled sample variance.
Suppose we partition of the parameter space by Θ1, . . . ,Θm where Θi =

{µi > maxj 6=i µj}, i.e., Θi is the part of the parameter space where the ith

subgroup is the best.
Within Θi we want to test the null hypothesis

H0i : the ith subgroup is the best

If a larger treatment effect is better, then that null hypothesis becomes

H0i : µi > maxj 6=i µj

Figure 1.1 shows, for the case of k = 3, H0i : the ith subgroup is the best
for i = 2, 3. The shaded area in Figure 1.1a is Θ2, while the shaded area in
Figure 1.1b is Θ3.

For every parameter value (µ1, . . . , µk) in Θi, Dunnett’s size-α test for that
parameter value being true has acceptance region

Ai =
{
µ̂i − µi > µ̂j − µj − dσ̂

√
2/n for all j 6= i

}
where d is the quantile that makes the test size-α.
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(a) Null space for µ2 > maxj=1,3 µj (b) Null space for µ3 > maxj=1,2 µj

FIGURE 1.1: Examples of partitioned MCB null hypotheses

Following the pivoting Theorem 1.2, the parameters within each Θi that
are not rejected are{

µi − µj > µ̂i − µ̂j − dσ̂
√

2/n for all j 6= i
}⋂

Θi

Therefore, an exact 100(1− α) confidence set is

C(µ̂1, . . . , µ̂k, σ̂) =

k⋃
i=1

({
µi − µj > µ̂i − µ̂j − dσ̂

√
2/n for all j 6= i

}
∩Θi

)
.

Figure 1.2a shows, for the case of k = 3, a particular example of an exact
MCB confidence set. Location of “×” is the point estimate of (µ̂1, µ̂2, µ̂3). It
is such that µ̂3 is somewhat larger than µ̂2 but much larger than µ̂1. Thus
H01 : the 1st subgroup is the best is rejected so that{

µi − µj > µ̂i − µ̂j − dσ̂
√

2/n for all j 6= i
}
∩Θi = ∅,

but neither H02 nor H03 is rejected.
As we will discuss in more detail in the next section, the natural parameters

for MCB are µi−maxj 6=i µj , i = 1, . . . , k. Contour of constant µi−maxj 6=i µj
is a “∨”, with the tip of the ∨ on the ith axis. Figure 1.2b shows, given an
exact MCB confidence set such as the one in Figure 1.2a, how one would
deduce lower and upper confidence bound for µ3 −maxj 6=3 µj .

In the next section, we will relate MCB confidence sets derived alge-
braically in Hsu (1981) and Hsu (1984) with the ones obtained by using the
geometrical pivoting technique above.

1.2.3 Multiple Comparisons with the Best

Earlier parameterization of MCB was in terms of “comparisons with the best”.
Thus, if a larger treatment effect is better, then even though which treatment
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(a) Exact MCB confidence set (b) Bounds for µ3 − maxj=1,2 µj

FIGURE 1.2: Deducing MCB confidence bounds from its exact confidence set

is best is unknown, one could define the parameters of primary interest to be

max
j=1,...,k

µj − µi, i = 1, . . . , k, (1.5)

the difference between the (unknown) true best treatment effect and each of
the k treatment effects. This was the parametrization in Hsu (1981, 1982) and
Edwards and Hsu (1983).

However, it turns out to be advantageous to parameterize MCB as “com-
parison with the best of the others”. Suppose a larger treatment effect (e.g.
survival time) implies a better treatment. Then the parameters

µi −max
j 6=i

µj , i = 1, . . . , k (1.6)

contain all the information that the parameters (1.5) contain, for if

µi −max
j 6=i

µj > 0,

then treatment i is the best treatment. On the other hand, if

µi −max
j 6=i

µj < 0,

then treatment i is not the best treatment. Further, even if the ith treatment
is not the best, but nevertheless

µi −max
j 6=i

µj > −δ

where δ is a small positive number, then the ith treatment is at least close to
the best.

Note that whereas the range of the parameters (1.5) is [0,∞), the range of
the parameters (1.6) is (−∞,∞). Thus, the reference point to which confidence
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intervals for the parameters (1.6) should be compared is the usual 0. This is
one advantage of the parametrization (1.6) over the parametrization (1.5).
Another advantage is, as will be shown in Section 1.2.4, lower and upper
confidence bounds on the (1.6) parameters correspond to Indifference Zone
Selection and Subset Selection respectively. Starting with Hsu (1984), MCB
parameterization switched to (1.6) from (1.5).

Contrasts such as those for all-pairwise comparisons (MCA)

µi − µj , i 6= j

and for multiple comparisons with a control (MCC)

µi − µk, i 6= k,

would be straight lines in Figure 1.2b, but multiple comparisons with the best
(MCB) parameters (1.6) have “∨” shaped contours, as shown in that figure.

Hsu (1984) showed that the closed intervals

[−(µ̂i −max
j 6=i

µ̂j − dσ̂
√

2/n)−, (µ̂i −max
j 6=i

µ̂j + dσ̂
√

2/n)+], i = 1, . . . , k (1.7)

form a set of 100(1−α)% simultaneous confidence intervals for µi−maxj 6=i µj .
Here −x− = min{0, x} and x+ = max{0, x}.

While the derivation in Hsu (1984) was algebraic, if one were to de-
duce from the exact MCB confidence set not just confidence bounds for
µ3 −maxj 6=3 µj as in Figure 1.2b but for µi −maxj 6=i µj for all i = 1, . . . , k,
then indeed one would get the simultaneous confidence intervals (1.7).

1.2.4 Connection with ranking and selection

Multiple comparison with the best, an early example of what is called selec-
tive inference, has its roots in ranking and selection, which has two principal
formulations: subset selection, and indifference zone selection.

Let (1), . . . , (k) denote the unknown indices such that

µ(1) ≤ µ(2) ≤ · · · ≤ µ(k).

In other words, (i) is the anti-rank of µi among µ1, . . . , µk. For example,
suppose k = 3 and µ2 < µ3 < µ1; then (1) = 2, (2) = 3, (3) = 1. For the
balanced one-way model (1.4), Subset Selection, due to Gupta (1956; 1965),
gives the set

G =

{
i : µ̂i −max

j 6=i
µ̂j + dσ̂

√
2/n > 0

}
as a 100(1 − α)% confidence set for (k).1 Subset Selection basically infers

1In traditional Subset Selection literature, when there are multiple indices for argmax
i

µi,

arbitrarily one such index is “tagged” to be (k).
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treatments with indices not in G are not the best treatment. Assuming µ(k) >
µ(k−1), the subset selection confidence statement

inf
µ,σ2

Pµ,σ2{(k) ∈ G} ≥ 1− α

is implied by the confidence statement associated with constrained MCB upper
bounds

inf
µ,σ2

Pµ,σ2

{
µi −max

j 6=i
µj ≤

(
µ̂i −max

j 6=i
µ̂j + dσ̂

√
2/n

)+
}
≥ 1− α,

since a non-positive upper bound on µi −maxj 6=i µj implies i 6= (k).
Indifference zone selection, due to Bechhofer (1954), has a design aspect

and an inference aspect.
Traditional Ranking and Selection inferences were on indices that corre-

spond to different rankings of the means of the populations; they were not
directly on the values of means themselves. Let [1], . . . , [k] denote the random
indices such that

µ̂[1] < µ̂[2] < . . . < µ̂[k].

(Since µ̂i are continuous random variables, ties occur in them with probability
zero.) In other words, [i] is the anti-rank of µ̂i among µ̂1, . . . , µ̂k. For example,
suppose k = 3 and µ̂2 < µ̂1 < µ̂3; then [1] = 2, [2] = 1, [3] = 3. To understand
the explanation of the connection between traditional Ranking and Selection
inferences and modern MCB inference below, it is important to keep in mind
that [1], . . . , [k] are random variables.

For the balanced one-way model (1.4) with σ known, the design aspect of
indifference zone selection sets the common sample size n to be the smallest
integer such that

dσ
√

2/n ≤ δ?, (1.8)

where δ?(> 0) represents the quantity of indifference to the user, that is,
treatment means within δ? of the best are considered to be equivalent to the
best.

Once data has been collected, the inference aspect of indifference zone
selection then ‘selects’ the [k]th treatment as the best treatment. The indiffer-
ence zone confidence statement is that if µ = (µ1, . . . , µk) is in the so-called
preference zone

{µ(k) − µ(k−1) > δ?},
then with a probability of at least 1−α the true best treatment will be selected.
In other words, the indifference zone confidence statement is

inf
µ(k)−µ(k−1)>δ?

Pµ,σ2{µ[k] = µ(k)} = 1− α. (1.9)

This confidence statement is implied by the confidence statement

inf
µ,σ2

Pµ,σ2{−δ? ≤ µ[k] −max
j 6=[k]

µj} ≥ 1− α (1.10)
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because, for µ in the preference zone, the only treatment mean µi with

−δ? ≤ µi −max
j 6=i

µj

is µ(k). While Fabian (1962) gave a direct proof of (1.10), we can see that the
confidence statement (1.10) is implied by the confidence statement

inf
µ,σ2

Pµ,σ2{−dσ
√

2/n ≤ µ[k] −max
j 6=[k]

µj} ≥ 1− α

because
dσ
√

2/n ≤ δ?

by indifference zone sample size design (1.8). This last confidence statement
in turn is implied by

inf
µ,σ2

Pµ,σ2{−(µ̂[k] −max
j 6=[k]

µ̂j − dσ
√

2/n)− ≤ µ[k] −max
j 6=[k]

µj} ≥ 1− α,

because
µ̂[k] −max

j 6=[k]
µ̂j ≥ 0

and
−dσ

√
2/n < 0.

The last confidence bound now looks familiar. It is one of the constrained
lower MCB confidence bounds on µi − maxj 6=i µj , i = 1, . . . , k, namely, the
one on µ[k]−maxj 6=[k] µj , in the special case of σ known, which can be thought
of as the case where the degree of freedom of σ̂ equals infinity.

In essence, the design aspect of indifference zone selection guarantees a
desired accuracy of the MCB lower bound for µ[k]−maxj 6=[k] µj , so that after
experimentation, the useful level 1− α confidence statement

−δ? ≤ µ[k] −max
j 6=[k]

µj (1.11)

can be made with probability one. For single-stage experiments, this can be
achieved only when σ is known. When σ is unknown and must be estimated,
there is a positive probability that the lower confidence bound

µ̂[k] −max
j 6=[k]

µ̂j − dσ̂
√

2/n

on µ[k] −maxj 6=[k] µj is less than −δ?. However, in analogy with sample size
computation based on power of tests, one can design a single-stage experiment
so that, with a probability 1−β < 1−α, the lower bound on µ[k]−maxj 6=[k] µj
will be greater than −δ?.

Book-length discussions of ranking and selection include Gibbons, Olkin
and Sobel (1977), Gupta and Panchapakesan (1979), and Bechhofer, Santner
and Goldsman (1995).
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Having shown subset selection and indifference zone selection correspond
to upper and lower MCB confidence bounds, a most important observation to
make at this point is that, since the MCB confidence intervals are guaranteed
to cover the parameters µi −maxj 6=i µj , i = 1, . . . , k, simultaneously with a
probability of at least 1 − α, subset selection inference and indifference zone
selection inference can be given simultaneously with the guarantee that both
inferences are correct with a probability of at least 1− α.

1.3 Partitioning for Confidence Sets and Confident Di-
rections

Both the Partitioning Principle, as well as the Closed Testing Principle, can
be applied to reduce multiplicity adjustment in multiple testing. Idea for both
principles is, to control FWER, multiplicity need only be adjusted to the ex-
tent that multiple null hypotheses may be simultaneously true. (See Chapter 1
of this Handbook for descriptions of the Closed Testing Principle and FWER.)

If a multiple test is a partition test, then (so long as it partitions the
entire parameter space) generally it can be pivoted to have an associated
confidence set (using Theorem 1.1 and Corollary 1.1). Why this is important
is if multiple testing decision-making is “compatible” with a confidence set,
then the directional error rate is controlled.

In testing a new treatment Rx against a control C, merely rejecting the
null hypothesis that there is no difference is not useful. One has to make a
decision: either Rx is better than C, or Rx is worse than C. In practice, this
decision is made according to what the data indicates, upon a rejection of an
equality null. If one infers Rx is better than C but in fact Rx is worse than
C, then this directional error should be counted as an error, and the rate of
this incorrect decision should be controlled.

The problem of comparing Rx versus C, for 2-sided inference, is often for-
mulated as a test of equality. There are two issues with that, the first is, as
Tukey (1991) said, “Statisticians classically asked the wrong question – and
were willing to answer with a lie, one that was often a downright lie . . . All
we know about the world teaches us that the effects of A and B are always
different – in some decimal place – for any A and B. Thus asking ‘Are the
effects different’ is foolish. What we should be answering first is ‘Can we tell
the direction in which the effects of A differ from the effects of B?’ ” So an
equality null is almost surely false. Ding et al. (2018) in fact reported their
observation that all equality nulls are statistically false in genome-wide asso-
ciation studies (GWAS), see the discussions in Sections 6.4 and 7.1 of Chapter
15 in this Handbook on testing for SNPs (single nucleotide polymorphisms)
testing as well. Both in Ding et al. (2018) and in Chapter 15 of Handbook,
instead of tests of equalities, confidence intervals are given instead. Chapter
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14 on bioinfomatics and genomics in this Handbook also find exact equalities
nulls in medical imaging to be false. Making extensive use of the Partitioning
Principles, inferences given in Chapter 14 are also in the form of confidence
intervals.

The other issue is, in general, we cannot assume a multiple test that con-
trols the FWER for testing

H=
1 : η1 = 0

H=
2 : η2 = 0 (1.12)

H=
3 : η3 = 0

automatically controls the directional error rate, because directional errors
are not counted in the Type I error definition for testing equality null hy-
potheses. To control the directional error rate in 2-sided testing, instead of
testing equality nulls (1.12), the formulation by Finner (1999) is to test pairs
of 1-sided nulls:

H≤1 : η1 ≤ 0, H≥1 : η1 ≥ 0

H≤2 : η2 ≤ 0, H≥2 : η2 ≥ 0 (1.13)

H≤3 : η3 ≤ 0, H≥3 : η3 ≥ 0.

Controlling the FWER of testing the null hypotheses (1.13) would indeed
control the directional error rate, because direction errors are counted as Type
I errors.

Shaffer (1980) proved that, if the test statistics are independent and certain
distributional assumptions are satisfied, then some step-down methods for
testing equality nulls do control the directional error rate. Providing a unifying
framework, Finner (1999) gave conditions under which tests controlling the
FWER of testing equality nulls actually control the FWER of testing the
paired 1-sided nulls. Intricacy of their proofs, as well as the distributional
assumptions required, make clear that control of directional error rate should
not be taken for granted in general.

However, to control the FWER of testing a set of null hypotheses using
a 100(1 − α)% confidence set is simple: reject a null hypothesis H0i if the
confidence set2 does not contain any parameter point in H0i. This is true
regardless of whether the null hypotheses are equalities like (1.12), or 1-sided
inequalities, or pairs of 1-sided inequalities like (1.13). Therefore, multiple
tests based on confidence sets have the advantage that they can control the
directional error rate when the problem is properly formulated to do so.

The multiple tests that we recommend in this chapter, such as the step-
down version of 1-sided Dunnett’s test, are tests with associated confidence
sets.

2which can be 2-sided simultaneous confidence intervals for 2-sided testing, or 1-sided
simultaneous confidence bounds for 1-sided testing
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1.3.1 A dose-response motivating example

Schnell et al. (2017) described an Alzheimer Disease (AD) study which com-
pared three doses of a new treatment (doses 1, 2, and 3) with a negative
control (dose 0, a placebo). There was an active control (a Standard of Care
or SoC, denoted as dose 4 for convenience) in the study as well. Response in
this study is improvement in ADAS-Cog11 (baseline ADAS-Cog11 minus final
ADAS-Cog11) after 24 weeks (a relatively short duration for an AD study).
For illustration purpose, we look at the male subset of the data (Sex = 1).

We can model the ni observed improvements from baseline Yi1, Yi2, . . . , Yini

under the ith dose, including dose 0, as a one-way model:

Yir = µi + εir, i = 0, . . . , k, r = 1, . . . , ni, (1.14)

where µi is the mean improvement given the ith dose, i = 0, . . . , k with k = 4,
and ε01, . . . , εknk

are i.i.d. normal errors with mean 0 and variance σ2 un-
known. This model differs from (1.4) in that sample sizes may be different.
We use the notation

µ̂i = Ȳi =

ni∑
r=1

Yir/ni,

σ̂2 = MSE =

k∑
i=0

ni∑
r=1

(Yir − Ȳi)2/
k∑
i=0

(ni − 1)

for the sample means and the pooled sample variance.
Of interests are:

• Is there verification that the active control (dose 4) is better than the placebo
(dose 0)?

• Which of Doses 1, 2, 3 are better than the placebo (Dose 0)?

Let µ = (µ0, . . . , µk), and for i = 1, . . . , 4, let

H0i : µi ≤ µ0

be the null hypotheses that Dose i is not better than the placebo, and let

Θi = {µ : µi − µ0 ≤ 0}

be the corresponding subspace of the parameter space.
Each of the null hypothesis can be tested using a 1-sided t-test, or a lower

confidence bound on µi − µ0. Dunnett’s (1955) method adjusts for the multi-
plicity of testing four null hypotheses, providing four simultaneous confidence
bounds, taking correlation of the point estimates into account, producing the
results in Table 1.2. From the lower confidence bounds, or the t adjusted p-
value, we can infer that Dose 4 (the active control) and Dose 2 are better than
the placebo.

However, there are two reasons for thinking beyond Dunnett’s method:
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Dose Estimated |t| adjusted 95% 1-sided lower t adjusted

improvement p-value confidence bound p-value

4 5.667 0.0061 1.806 0.0030

3 3.605 0.2076 −0.675 0.1040

2 3.710 0.0991 0.006 0.0496

1 1.757 0.6911 −1.914 0.3663

TABLE 1.2: Analysis of the Alzheimer data set from single-step Dunnett’s
Method with Dose 0 as the Control

1. In parts of the parameter space where not all four null hypotheses
are true, adjustment for multiplicity conceptually can be less than
four;

2. In testing to make decision about which doses are better than the
placebo, it may seem natural to follow a path of testing in the order
of active control → high dose → medium dose → low dose.

Both reasons lead to partitioning of the parameter space, different par-
titioning. The remainder of this section describes how to partition to reduce
multiplicity, whereas in Section 1.4 we will describe how to partition to channel
decision-making to follow paths.

1.3.2 Partitioning 1-sided tests without paths

Following Finner and Strassburger (2002), any family of hypothesesH = {Hi :
i ∈ I} generates a natural partition which is the coarsest partition with the
property that each Hi can be represented as a disjoint union of the members
of the partition.

If θ ∈ Θ is the ‘true’ parameter, then Hi is said to be true if θ ∈ Hi. The
index set I(θ) = {i ∈ I : Hi 3 θ} will denote the set of all indices of true null
hypotheses if θ is the true parameter.

Let J = {J : J ⊆ I} and ΘJ = {θ ∈ Θ : I(θ) = J}, J ⊆ I. The natural
partition is defined by

ΘJ = {ΘJ : J ∈ J }.

In words, ΘJ consists of parameter points for which Hi, i ∈ J, are true but
Hj , j /∈ J, are false.

Note that Θ∅ is one of the partitioning subspaces. That is, one of the J
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is the empty set ∅, so Θ∅ consists of parameter points for which all the null
hypotheses are false. While these parameter points are not involved in any test
of the original null hypothesesH = {Hi : i ∈ I}, it is better for each parameter
in Θ∅ to be formally tested as well since the construction of confidence set
associated with testing H by Theorem 1.1 expects every parameter point in
the parameter space be tested.

Thereby, the closure H of a family H generates the same natural partition
as H. Supposing that H = H, one may set Θi = Hi∩ (

⋃
j:Hj⊂Hi

Hj)
c for i ∈ I

and Jp = {i ∈ I : Θi 6= ∅}. Then the natural partition generated by H is given
by

Θ(Jp) = {Θi : i ∈ Jp},

i. e., Θ(Jp) = ΘJ . If Jp = I, then each hypothesis Hi can be identified with
Θi and vice versa. Note that Jp may be much smaller than I.

So in testing k null hypotheses

H0i : θi ≤ 0, i = 1, . . . , k, (1.15)

for each I ⊆ {1, . . . , k}, I 6= ∅, form H?
0I : θi ≤ 0 for all i ∈ I and θj > 0 for

j /∈ I. There are 2k parameter subspaces and 2k − 1 hypotheses to be tested.
In the Alzheimer Disease study, θi = µi − µ0, i = 1, . . . , 4. So with k =

4 in the Alzheimer study, there are sixteen combinations of these four null
hypotheses being true or false. Partitioning divides the parameter space Θ =
{θ1, θ2, θ3, θ4} into sixteen disjoint subspaces as depicted in Table 1.3, with
a Xrepresenting a null hypothesis being true and an 7 representing that null
hypothesis being false.

To see explicitly the 16 parameter subspaces, for each of the 16 rows in
Table 1.3, we take intersection of Θi and their complements where a } repre-
sents Θi and a ⊗ represents Θc

i . For example, the second row, with H01 and
H02 and H03 being true while H04 being false, that combination corresponds
to µ ∈ Θ1 ∩Θ2 ∩Θ3 ∩Θc

4 of the parameter space. So the sixteen partitioning
parameter subspaces are

Θ{1,2,3,4} = {θ1 ≤ 0 and θ2 ≤ 0 and θ3 ≤ 0 and θ4 ≤ 0}
Θ{1,2,3} = {θ1 ≤ 0 and θ2 ≤ 0 and θ3 ≤ 0 and θ4 > 0}

· · ·
Θ{1,2} = {θ1 ≤ 0 and θ2 ≤ 0 and θ3 > 0 and θ4 > 0}
Θ{1,3} = {θ1 ≤ 0 and θ2 > 0 and θ3 ≤ 0 and θ4 > 0}

· · ·
Θ{3} = {θ1 > 0 and θ2 > 0 and θ3 ≤ 0 and θ4 > 0}
Θ{4} = {θ1 > 0 and θ2 > 0 and θ3 > 0 and θ4 ≤ 0}

Θ∅ = {θ1 > 0 and θ2 > 0 and θ3 > 0 and θ4 > 0}

with the corresponding partitioning null hypotheses being
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H?
{1,2,3,4} : θ1 ≤ 0 and θ2 ≤ 0 and θ3 ≤ 0 and θ4 ≤ 0

H?
{1,2,3} : θ1 ≤ 0 and θ2 ≤ 0 and θ3 ≤ 0 and θ4 > 0

· · ·
H?
{1,2} : θ1 ≤ 0 and θ2 ≤ 0 and θ3 > 0 and θ4 > 0

H?
{1,3} : θ1 ≤ 0 and θ2 > 0 and θ3 ≤ 0 and θ4 > 0

· · ·
H?
{3} : θ1 > 0 and θ2 > 0 and θ3 ≤ 0 and θ4 > 0

H?
{4} : θ1 > 0 and θ2 > 0 and θ3 > 0 and θ4 ≤ 0

H?
∅ : θ1 > 0 and θ2 > 0 and θ3 > 0 and θ4 > 0

In general, for each i, partition testing would infer θi > 0 if and only if
all H?

0I with i ∈ I are rejected, because H0i is the union of H?
0I with i ∈ I.

To infer Dose i to be better than the placebo is to rule out the possibility
that µi − µ0 ≤ 0, which means µ does not belong to any of the partition
null hypotheses that contain µi − µ0 ≤ 0, which in turn means all rows that
contain a Xfor H0i is rejected.

These 16 parameter subspaces obviously partition the parameter space,
that is, the true µ is in exactly one of these 16 partition null hypotheses.
It is impossible for Dose 2 to be better than the placebo and at the same
time to be worse than the placebo, for example. Therefore, each of the par-
titioned null hypothesis can be tested at level-α while controlling FWER
at level-α, no multiplicity adjustment is needed (even though there are 16
partitioning null hypotheses). There is multiplicity adjustment within the
test for most rows in Table 1.3 though, because partitioning null hypothe-
sis such as H?

{1,2,3} : µ ∈ Θ1 ∩Θ2 ∩Θ3 ∩Θc
4 implies the three null hypotheses

H0i : θi ≤ 0, i = 1, . . . , 3 are simultaneously true. However, for this particu-
lar partitioning null hypothesis, the extent to which multiplicity needs to be
adjusted is three, not four. For testing H?

{2,3}, multiplicity adjustment is two,

not four, for example. So compared to Dunnett’s (1955) single-step method,
which in essence adjusts for a multiplicity of four for all H?

I , partition testing
potentially reduces multiplicity adjustment.

How to test any null hypothesis is not unique (one can flip a coin, for
example, but that would be silly). Regardless of how each partitioning null
hypothesis is tested, we can invoke Theorem 1.1 to obtain a corresponding
confidence set.

Weak partition testing makes use the fact that a level-α test for the inter-
section null hypothesis

H{1,2,3} : µ ∈ Θ1 ∩Θ2 ∩Θ3 (1.16)

(which does not specify whether µ ∈ Θ4 or not) actually is also a level-α test
for the partitioning null hypothesis

H?
{1,2,3} : µ ∈ Θ1 ∩Θ2 ∩Θ3 ∩Θc

4 (1.17)
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for example. This is because a level-α test for (1.16) would not reject with a
probability greater than α when µ ∈ Θ1∩Θ2∩Θ3 regardless of the value of µ4,
so it would not reject with a probability greater than α when µ is in the subset
µ ∈ Θ1 ∩ Θ2 ∩ Θ3 ∩ Θc

4 with µ4 > µ0 in particular. Weak partition testing
tests each of the 15 partitioning null hypotheses such as (1.17) at level-α by
testing its corresponding intersection null hypothesis (1.16) at level-α.

Still, tests for the intersection null hypotheses are not unique. They could
be F-tests, or max-T/min-P tests, for example. Technically, it would not be
wrong to use an F-test to test H{1,2,3,4} and use max-T/min-P tests for the
remaining intersection null hypotheses, for example, so long as all 15 tests
are executed without taking shortcuts. What has caused confusion was that
two legacy multiple tests, Holm’s step-down method and Hochberg’s step-up
method, appear to execute only k tests based on the ordered p-values. In
reality, those k tests are shortcuts to all 2k − 1 tests (see Huang and Hsu
2007). Without that realization, there were some incorrect shortcutting early
on (see Chapters 3 and 4 of Hsu 1996). So we will use the analysis of the
Alzheimer study to illustrate when and how to take legitimate shortcuts in
executing a partition test.

Holm’s step-down method adjusts for multiplicity within the test for each
partitioning null hypothesis H?

I by the Bonferroni inequality, while Hochberg’s
step-up method adjusts for multiplicity using a conservative modification of
Simes’ equality (see Huang and Hsu 2007). Neither method takes the correla-
tions among the test statistics into account. Under model (1.14) though, joint
distribution of the test statistics is readily computable. We thus illustrate
partition testing using Dunnett’s method to test each H?

I , to take the joint
distribution of the test statistics into account. See Chapter 3 on multivariate
methods in this Handbook for a comprehensive discussion of multiple tests
that take joint distribution into account.

Conditions for taking shortcuts

To take step-down shortcuts, pretty much the form of the test for each parti-
tioning null hypothesis H?

I needs to be a maximum T (maxT) or, equivalent
in form, a minimum p-value (minP) test. F-tests, which are based on sums of
squares, do not allow shortcuts.

Shortcut condition 1 For the individual null hypothesis H?
0i that has the

largest test statistic value or, equivalent in form, the smallest p-value in
testing a partitioning null hypothesis H?

I with I 3 i, it remains the null
hypothesis having the largest test statistic and the smallest p-value in testing
any other partitioning null hypothesis H?

J with a smaller set J, J ⊂ I;

Shortcut condition 2 For this individual null hypothesis H?
0i, its adjusted

p-value in testing H?
J with any J ⊂ I is no larger than its adjusted p-value

in testing H?
I .

Even with a maxT/minP test for each H?
I , there is subtlety involved in
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executing a multiple test to meet the shortcut conditions, which we will illus-
trate in executing a step-down version of Dunnett’s method. (See Chapter 1
of this Handbook for a description of what are called step-wise methods.)

1.3.3 Confident decision-making based on step-down Dun-
nett’s method

Even with the null hypotheses being the 1-sided (1.15), that is, with the inten-
tion being to infer which doses are better than the placebo, current practice
is still to execute the testing as 2-sided.

There is a perception that controlling the FWER of 2-sided testing of
equality nulls at level-α controls the FWER of testing 1-sided nulls at level-
α/2. This perception is slightly wrong if the equality nulls are tested by a
confidence intervals method, but can be quite wrong if the equality nulls are
tested by a method based on p-values without an associated confidence set.
Basically, if the 1-sided method on which 2-sided testing is based has an
associated confidence set, then the 1-sided FWER (including the directional
error rate) is (to a close approximation) α/2. But such is not necessarily the
case if 2-sided testing is based on p-values for testing equalities.

The single-step Dunnett’s method produces confidence intervals. In gen-
eral, if we use the lower confidence bounds of 100(1−α)% simultaneous 2-sided
confidence intervals to test 1-sided nulls (in any particular H?

0I), the 1-sided
Type I error rate (for testing that H?

0I) is close to but not exactly 100(α/2)%,
as can be seen by the fact that the 2-sided |t| adjusted p−values are not exactly
twice the 1-sided t adjusted p-values in Table 1.2. With equal-tailed confidence
intervals and ± symmetry in the joint distribution, it actually can be shown
that this practice is slightly liberal. However, our experience has been that the
liberalism is mostly slight, of not a big concern. So, to reflect current practice,
we test the 1-sided null hypotheses (1.15) using the appropriate “side” of a
method which has an associated confidence set.

Based on the partitioning principle, Chapter 3 of Hsu (1996) derived si-
multaneous confidence bounds for a step-down version of 1-sided Dunnett’s
method, using the Partition Projection corollary 1.1.3 So, using the lower
bounds of 90% 2-sided Dunnet simultaneous confidence intervals to test each
H0I , the 1-sided FWER including the directional error rate for testing (1.15)
will be (approximately) 5%. However, in Section 1.3.5, we will explain the
danger of using a method based on p-values for tests of equality nulls without
an associated confidence set.

We also note (in passing) that, if one were to view the execution of step-
down Dunnett’s method controlling FWER for testing the equality nulls (1.12)
at level-α as intended for 2-sided inference, then it would be non-trivial to
prove that the 2-sided directional error rate is controlled at level-α (i.e., it

3Technically, the derivation in Hsu (1996) was for a balanced one-way design, but the
idea generalizes.
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would be non-trivial to prove the FWER for testing the paired 1-sided nulls
(1.13) is controlled at level-α). The reason for that is such proofs typically as-
sume there is balance in the design (such as equal sample sizes), or even inde-
pendence among the test statistics. Neither is true is in our real life Alzheimer
study example.

Table 1.4 facilitates the execution of partition testing using the 2-sided
Dunnett’s method for testing each partitioning H?

I . To be clear, our intended
inferences are 1-sided so the problem is formulated as testing the 1-sided
null hypotheses (1.15). We use the lower confidence bounds of 90% 2-sided
confidence intervals to test each each H?

0I at (approximately) 5%, so that the
FWER of testing the 1-sided nulls (1.15) is approximately 5%.

The trade-off between the single-step Dunnett’s method and its step-down
version is that, while the step-down version potentially can infer more doses
to be better than the placebo (the negative control), it gives up the ability to
give strictly positive lower bounds. That is, the step-down version infers Dose
i to be better than the placebo by giving the inference µi − µ0 > 0. Instead
of going through details of the derivation, we give an intuitive explanation of
why this is so.

In accordance with Theorem 1.1, to provide positive lower confidence
bounds for µi − µ0, one has to test for possible positive values of µi − µ0,
such as µi−µ0 = 0.01, 0.02, . . .. Dunnett’s method does that, testing each pa-
rameter configuration (µi − µ0 = µ?i − µ?0, i = 1, . . . , k), for all possible values
of µ?i −µ?0 positive and negative, and then applying the pivoting Theorem 1.1
to get the lower bounds.

Both closed testing and partition testing can potentially infer more doses
to be better than the placebo than Dunnett’s method. (See the introductory
Chapter 1 for a description of closed testing.) How they do that is by not
testing for possible positive values of (µi−µ0, i /∈ J), in parts of the parameter
space where (µi−µ0, i /∈ J) are positive (thus reducing multiplicity adjustment
in testing H?

J comparing to testing H?
{1,...,k}). To wit, (µi − µ0, i /∈ J) > 0

in H?
J with J ⊂ I, so closed testing and (weak) partition testing do not

bother testing for (µi − µ0, i /∈ J) in testing H?
J , thus reducing multiplicity

adjustment but giving up the ability to provide positive lower bounds for
them. However, the partitioning version of the step-down 1-sided Dunnett’s
method is a confidence set method, so it controls the directional error rate.
That is the important point.

1.3.4 Executing step-down Dunnett’s method for the
Alzheimer study

The subtlety in execution alluded to after stating the Shortcut conditions is
that tests for all H?

I , I ⊆ {1, . . . , k}, should be executed by fitting the entire
data to the model. The reason for this is if, instead, testing for H?

J is done by
fitting only data involved in H?

J , then even with point estimates for treatment
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effects remaining the same, estimates for σ2 would differ for different J , and
shortcut condition 2 can be violated.

Suppose, for example, σ̂2 for H?
{1,2,3} is computed based on Dose 1 and

2 and 3 data, while σ̂2 for H?
{1,2} is computed based on Dose 1 and 2 data.

Then the two σ̂2 would differ in value and in degrees of freedom, and p-value
of H02 adjusted for H?

{1,2} may be larger than the p-value of H02 adjusted for
H?
{1,2,3}, so shortcut condition 2 may not hold.

We thus fit the entire data set to the model (1.14) throughout our demon-
stration of how using Dunnett’s method to test each H?

I has some shortcuts,
facilitated by the adjusted p-values displayed in Table 1.4, which are to be
compared with 0.10 for 1-sided FWER ≈ 5%.

Note that the SAS codes in Program 12.9 of Dmitrienko et al. (2007) and
the codes in Program 14.5 of Westfall et al. (2011) are meant for studies with
balanced designs only. If one so desires, one can follow the concept demon-
strated below to write his/her own codes for studies that are not perfectly
balanced and/or have covariates, fitting the entire data set to a model, and
specifying contrasts for each H?

I that needs to be tested.

Step 1 Dose 4 has the smallest p-value. Its p-value adjusted for testing
H?
{1,2,3,4} is 0.0061, so H?

{1,2,3,4} is rejected at the 2-sided α = .10 level.

The adjusted p-value for Dose 4 in testing any H?
J with J ⊂ {1, 2, 3, 4}

would be smaller than 0.0030, so all H?
J with J ⊂ {1, 2, 3, 4} would be re-

jected as well. We thus know all eight of the partitioning null hypotheses H?
I

with 4 ∈ I are rejected. Therefore, we can infer Dose 4 (the active control)
to be better than the placebo, with a confidence bound of µ4 − µ0 > 0.

Step 2 Dose 2 has the second smallest p-value. Its p-value adjusted for testing
H?
{1,2,3} is 0.0783, so H?

{1,2,3} is rejected at the 2-sided α = .10 level. The

adjusted p-value for Dose 2 in testing any H?
J with J ⊂ {1, 2, 3} would be

smaller than 0.0783, so all H?
J with J ⊂ {1, 2, 3} would be rejected as well.

We know from earlier that all H?
I with 4 ∈ I are rejected, and we now know

that among the remaining H?
I , those with 2 ∈ I are rejected. Therefore, we

can infer Dose 2 to be better than the placebo, with a confidence bound of
µ2 − µ0 > 0.

Step 3 Dose 3 has the third smallest p-value. Its p-value adjusted for testing
H?
{1,3} is 0.1217, so H?

{1,3} fails to be rejected at the 2-sided α = .10 level.

Thus, we are unable to infer Dose 3 to be better than the placebo.4 At
this point, we might as well stop, not bother testing H?

{1} or H?
{3}, because

even if either is rejected, we cannot infer either dose to be better than the
placebo, because H?

{1,3} fails to be rejected.

So, for the Alzheimer study, 1-sided Dunnett’s method and its step-down

4Technically, one could compute a lower confidence bound for µ3−µ0 by projection, but
it would be negative (< 0), so is not reported here.
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version come to the same inference, both inferring Doses 4 and 2 to be better
than the placebo. The single-step Dunnett’s method in fact provides more
information, in giving positive lower bounds of 1.806 and 0.006 for µ4−µ0 and
µ2−µ0 (instead of the lower bounds of zero by its step-down version). However,
one can see that there is the possibility that the Dose 3 p-value adjusted for
H{1,3} (instead of adjusted for H{1,2,3,4} by the single-step Dunnett’s method)
can potentially be small enough (< .10 instead of being 0.1217) to allow the
step-down version to infer Dose 3 to be better than the placebo, had the
data turned out a bit differently. Such is the trade-off between single-step and
step-down, the potential of more doses inferred to be better than the placebo
versus an inability to give strictly positive lower confidence bounds.

1.3.5 Testing equality null hypotheses may not control the
directional error rate

Besides reminding readers that multiple tests that have associated confidence
sets automatically control the directional error rate, below we describe some
real life situations in which (not confidence set based) multiple tests that
control the FWER of testing equality nulls may not control the directional
error rate.

An earlier realization of this danger was documented in Hsu and Berger
(1999). In the setting of dose-response studies, a Type I incorrect decision is
erroneously inferring a minimum effective dose (MED) that is lower than the
true MED. Hsu and Berger (1999) showed that most of the so-called contrasts
tests (that were popular then) that technically control the FWER of testing
equality null hypotheses have inflated Type I incorrect decision rates.

Let us say we test for efficacy of Rx versus C, and there is a biomarker
dividing the patients into a g+ and a g− subgroup. We are interested in
answering the questions

Q+ : Is efficacy ηg+ in the g+ subgroup > 0?

Q− : Is efficacy ηg− in the g− subgroup > 0?

Q± : Is efficacy ηg± in the overall population {g+, g−} > 0?

If one formulates these questions properly as testing the three 1-sided null
hypotheses

H+
≤ : ηg+ ≤ 0 vs. K+

> : ηg+ > 0

H−≤ : ηg− ≤ 0 vs. K−> : ηg− > 0 (1.18)

H±≤ : ηg± ≤ 0 vs. K±> : ηg± > 0

then it is possible that

3 true All three nulls are true;



Partitioning for Confidence Sets and Confident Directions 27

2 true Two out of three are true (e.g., H−≤ and H±≤ )

1 true Only one of the nulls is true (e.g. H−≤ )

0 true None is true.

For example, it is certainly possible that Rx is better than C by an amount
δ (> 0) in g+ but worse in g− by an amount more than δ, in which case not
all three null hypotheses are true (H+

≤ is false) but two out of the three nulls

(H−≤ and H±≤ ) are true. So multiplicity adjustment in step-down testing would
go from three for [3 true] to two for [2 true] to one for [1 true].

On the other hand, if one formulated these questions as testing three equal-
ity null hypotheses,

H+
= : ηg+ = 0

H−= : ηg− = 0 (1.19)

H±= : ηg± = 0

then any two of the null hypotheses being true implies the third is true5.
Therefore, if it is not the case that all three null hypotheses are true, then at
most one of the null hypothesis is true. So, if a test for all three equality null
hypotheses (1.19) being true is rejected, then one can go straight to testing the
individual nulls with no multiplicity adjustment. In other words, multiplicity
adjustment in testing would decrease from three directly to one, too drastic a
jump to control the directional error rate. A calculation in Han et al. (2020)
shows a multiple test which controls the FWER of testing the 2-sided null
(1.19) at 10% has a 1-sided (directional) error rate at least 6.4%.

What Shaffer (1980) and Finner (1999) showed was it is non-trivial to prove
a multiple test controlling the FWER of testing the equality nulls (1.12) at
α actually controls the directional error rate testing the pairs of 1-sided nulls
(1.13). What we are cautioning here is a counter-example exists that a 2-sided
multiple test controlling the FWER for testing the equality nulls (1.12) at α
does not control the directional error rate testing the 1-sided nulls (1.15) at
level-α/2.

It may also be useful to mention how perspective on taking advantage
of logical relationships among equality nulls has evolved. A simple example
of such logical relationships similar to but different from our example above
is in traditional all-pairwise comparisons. If the comparison of three means
µ1, µ2, µ3 is formulated as testing the three equality nulls:

H12 : µ1 = µ2

H23 : µ2 = µ3

H31 : µ3 = µ1

5provided efficacy measure is logic-respecting as defined in Section 4 of Chapter 13 on
Subgroups Analysis in this Handbook, so that ηg± is a weighted average of ηg+ and ηg−
say
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then clearly any two nulls being true implies the third is true. Shaffer (1986)
proposed to take advantage of such relationships to reduce multiplicity ad-
justment. Westfall (1997) and Westfall and Tobias (2007) followed up with
computer algorithms for implementation, as TYPE=LOGICAL in the STEPDOWN

option of the LSMEANS and MSMESTIMATE statements of SAS. However, fur-
ther follow-up by Westfall et al. (2013) revealed that making use of logical
relationships in testing equality nulls may cause the directional error rate to
not be controlled. So perspective has turned from being positive toward the
negative. For 2-sided inference when there are logical relationships among the
parameters, a safe approach is to use confidence set methods such as Tukey’s
(1953) method for all-pairwise comparisons and the methods in Ding et al.
(2016) and Lin et al. (2019) for inference on efficacy in subgroups and their
mixtures (methods which are described in Chapter 13).

Finally, we point out that an extreme example of a test that is not capable
of controlling the directional error rate is the log-Rank test used in survival
analysis everyday. It can be thought of as testing infinitely many equality nulls
(1.12) between Rx and C, that the survival probabilities are exactly equal at
all time points or, equivalently, that the expected survival times are exactly
equal for all quantiles. In multiple comparisons, such a null hypothesis is called
a Complete null, where all the null hypotheses are true.6 Controlling the Type
I error rate of testing a complete null is termed weak control, which may be
insufficient to control the incorrect decision rate. Section 8 of Chapter 13 on
Subgroups Analysis in this Handbook contains a realistic example showing
that a level-5% log-Rank test can have an incorrect (directional) decision rate
exceeding 15%, so the danger of the log-Rank test testing a very restrictive
equality null can harm patients is real. Instead of reporting p-values based
on the log-Rank test while reporting confidence interval based on the Wald
test, we suggest reporting confidence sets (which can of course be used to test
hypotheses) or employ tests with compatible confidence sets.

1.4 Partition To Follow Decision Paths

In therapeutic areas such as diabetes and hypertension, higher doses generally
give larger effects.7 However, in psychiatric areas such as schizophrenia, true
response to increasing dose of a drug, as measured by reduction in Positive
and Negative Syndrome Scale (PANSS) for example, may first increase then
decrease. See Arvanitis et al. (1997) for an example.

6The complete null is also called the global null. See Chapter 1 of this Handbook.
7But too high a dose can be dangerous. For diabetic patients, injecting too much insulin

can cause blood sugar level to drop too low and result in hypoglycemia. Too much diuretics
for treating hypertension may cause the blood pressure to be too low resulting in syncope
(fainting).
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In our Alzheimer study example, Dose 2 (medium dose) seems to be a
bit more effective than Dose 3 (high dose). Whether that is real, or due to
variability in a finite sample, is hard to tell.

In any case, whether the thinking is higher doses correspond to larger
effects, or it is awkward to state there is evidence of efficacy at the medium
dose but not at the high dose, it is not uncommon for the analysis plan of a
clinical study to have a decision path, testing for efficacy from high dose to
low dose. Testing for efficacy proceeds along the path, stopping as soon as
efficacy fails to be established.

How this differs from testing without a path is, testing along a single
path, FWER is controlled without multiplicity adjustment. A common mis-
conception is this validity depends on an assumption that the true response is
monotonically non-decreasing as dose increases. Actually, it is valid without
any assumption on the response curve. The simplest proof of this validity is
to “ask the questions”, by partitioning.

1.4.1 The decision path principle: asking the right questions

A sequence of potential inferences is a decision path.

Decision Path Principle: Null hypotheses should be formulated so that
decision-making naturally follows decision paths.

Implicitly used in Hsu and Berger (1999), this principle was explicitly
stated in Liu and Hsu (2009). Applying this principle changes how the null
hypotheses are formulated, by asking the right questions.

Suppose dose i is considered effective if µi > µ0+∆. To logically infer dose
k is effective by the rejection of a null hypothesis, the null hypothesis tested
has to be H0k : Dose k is ineffective. To logically infer doses k and k − 1 are
effective by the rejection of the null hypotheses H0k and H0(k−1), the union
of the null hypotheses H0k and H0(k−1) needs to include the possibilities dose
k is ineffective and/or dose k − 1 is ineffective.

Consider testing the null hypotheses

H↓0k : Dose k is ineffective

H↓0(k−1) : Dose k is effective but dose k − 1 is ineffective

...

H↓0i : Doses i+ 1, . . . , k are effective but dose i is ineffective

...

H↓01 : Doses 2, . . . , k are effective but dose 1 is ineffective
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Statistically, the null hypotheses are:

H↓0k : µk ≤ µ0 + ∆

H↓0(k−1) : µk−1 ≤ µ0 + ∆ < µk

...

H↓0i : µi ≤ µ0 + ∆ < min{µi+1, . . . , µk} (1.20)

...

H↓01 : µ1 ≤ µ0 + ∆ < min{µ2, . . . , µk}

Together with

H↓00 : µ0 + ∆ < min{µ1, . . . , µk} (1.21)

the null hypotheses (1.20) partition the parameter space, so no multiplicity
adjustment is needed in testing them.

For any integer i, if H↓0j , j = i, . . . , k, are all rejected, then the logical
inference is doses i, . . . , k are all efficacious: µj > µ1 + ∆, j = i, . . . , k.

For example, suppose

H↓04 : Dose 4 is not efficacious

is rejected. Then obviously one can infer Dose 4 is efficacious.
Suppose

H↓04 : Dose 4 is not efficacious

and
H↓03 : Dose 4 is efficacious but dose 3 is not efficacious

are both rejected, then since the union of H↓04 and H↓03 is “either dose 4 or

dose 3 is not efficacious,” the rejection of H↓04 and H↓03 implies “both dose 4
and dose 3 are efficacious.”

On the other hand, if

H↓04 : Dose 4 is not efficacious

is rejected,

H↓03 : Dose 4 is efficacious but dose 3 is not efficacious

fails to be rejected, but

H↓02 : Doses 4 and 3 are efficacious but dose 2 is not efficacious

is rejected, then still the only useful inference remains Dose 4 is efficacious.
So one might as well stop testing when H↓03 fails to be rejected. By asking
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the right questions (1.20), partition testing automatically follows the decision
path.

Level-α tests for each H↓0i, i = 1, . . . , k, are of course not unique. Note,
however, a level-α test for

H0i : µi ≤ µ0 + ∆ (1.22)

is also a level-α test for

H↓0i : µi ≤ µ0 + ∆ < min{µi+1, . . . , µk}

For example, a test which rejects no more than 5% of the time when dose 3 is
ineffective, regardless of whether dose 4 is effective, will reject no more than
5% of the time in particular when dose 3 is ineffective and dose 4 is effective.
So the simplest level-α test for H↓0i is to use a one-sided two-sample size-α

t-test comparing µi with µ0 for each H↓0i.

With this choice of test for H↓0i, i = 1, . . . , k, since the null hypothe-
ses partition the parameter space, Hsu and Berger (1999) could apply the
Partition-Project corollary 1.1 to give the confidence bounds version of the
inference:

Step 1

If µ̂k − µ̂0 − tα,ν σ̂
√

1/nk + 1/n0 > ∆,

then infer µk − µ0 > ∆ and go to Step 2;

else infer µk − µ0 > µ̂k − µ̂0 − tα,ν σ̂
√

1/nk + 1/n0 and stop.

Step 2

If µ̂k−1 − µ̂0 − tα,ν σ̂
√

1/nk−1 + 1/n0 > ∆,

then infer µk−1 − µ0 > ∆ and go to Step 3;

else infer µk−1 − µ0 > µ̂k−1 − µ̂0 − tα,ν σ̂
√

1/nk−1 + 1/n0 and stop.

...

Step k
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If µ̂1 − µ̂0 − tα,ν σ̂
√

1/n1 + 1/n0 > ∆

then infer µ1 − µ0 > ∆ and go to Step k + 1;

else infer µ1 − µ0 > µ̂1 − µ̂0 − tα,ν σ̂
√

1/n1 + 1/n0 and stop.

Step k + 1

Infer mini=1,...,k µi − µ0 > mini=1,...,k{µ̂i − µ̂0 − tα,ν σ̂
√

1/ni + 1/n0} and stop.

Note the Step k + 1 confidence bound is from pivoting an Intersection-Union
Tests (IUT) for (1.21).

Closed duplicate testing to stay on a decision path

Whether there are decision paths or not, closed testing would test all inter-
sections of the null hypotheses in (1.15). To stay on a (single) decision path,
what closed testing does (including the Graphical Approach) is to test all the

intersection null hypotheses that make up each of H↓0i by one and the same

pair-wise t test, rejecting if µ̂i − µ̂0 − tα,ν σ̂
√

1/ni + 1/n0 > ∆. (Chapter 5

of this Handbook is on the Graphical approach.) In this scheme, testing H↓04
corresponds to testing all eight rows with } for Θ4 in Table 1.3 by the same
test which rejects when µ̂4 − µ̂0 − tα,ν σ̂

√
1/n4 + 1/n0 > ∆. Testing H↓03 cor-

responds to testing the four rows with } for Θ3 but ⊗ for Θ4 in Table 1.3 by
the same test which rejects when µ̂3 − µ̂0 − tα,ν σ̂

√
1/n3 + 1/n0 > ∆, and so

forth. Bauer et al. (1998) explains this (redundant) closed testing scheme as:

“Now for strictly ordered null hypotheses, every level α-test can be for-
mally considered as a level α-test for all intersections with null hypotheses
at a lower hierarchical order.”

1.4.2 Making decisions along a path for the Alzheimer study

We take ∆ = 0 and fit the entire data to the model. Unlike the multivariate
case, in the univariate case, comparing 2-sided |t| p-values to 10% corresponds
exactly to comparing 1-sided t p-values to 5%. So, using the 2-sided |t| p-values
in Table 1.5 which are computed without multiplicity adjustment, we have

Step 1
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Is µ̂4 − µ̂0 − t.05,ν σ̂
√

1/n4 + 1/n0 > 0?

Yes since the 2-sided |t| p-value for Dose 4 = 0.0016

So infer µ4 − µ0 > 0 and go to Step 2;

Step 2

Is µ̂3 − µ̂0 − t.05,ν σ̂
√

1/n3 + 1/n0 > 0?

No since the 2-sided |t| p-value for Dose 3 = 0.0665

So stop.

So, for the particular case of this Alzheimer study, at the 1-sided 5% level,
making decisions along the Dose 4 → 3 → 2 → 1 path infers only Doses 4 to
be better than the placebo, while the single-step and the step-down Dunnett’s
method infer Doses 4 and 2 to be better than the control.

The methods we have presented do not assume response has any particular
form as a function of dose. Though, for the Minimum Effective Dose (MED)
problem to be meaningful, there is the tacit assumption that if a dose is ef-
ficacious, then all higher doses are efficacious as well. In the presence of a
∆ > 0 defining a clinically meaningful difference, this assumption actually is
not as strong as the one that efficacy is monotonically increasing in dose (see
Dmitrienko et al. 2007). In addition, see Chapter 11 on dose-finding in this
Handbook for the MCP-Mod approach which models response as a continu-
ously valued function of dose.

1.4.3 Partitioning when there are multiple decision paths

Let µij denote the mean response in dose group i for endpoint j, i = 0, 1, ..., k,
j = 1, ...,m, where i = 0 denotes the placebo group, while i = 1, . . . , k are
additional doses. And j = 1 denotes the primary endpoint, j = 2 is the
secondary endpoint, j = 3 is the tertiary endpoint, and so forth. Define θij =
µij − µ0j to be the difference in mean efficacy measurement between dose
group i and the placebo group for endpoint j.

Assuming a larger measurement indicates a better treatment, the statisti-
cal inference of interest is to test, for each dose endpoint combination,

H0ij : θij ≤ δj , i = 1, ..., k, j = 1, ...,m. (1.23)
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Efficacy claim of the new experimental drug is based on the primary end-
point alone, additional claims on secondary endpoints are of interest only if
the primary endpoint has shown efficacy.

Liu and Hsu (2009) showed how to apply Decision Path Principle by us-
ing partition testing to situations in which there is an ordering among the
endpoints (in terms of sequence of potential inferences), but there is no such
ordering among the doses. The lower ordered secondary endpoints, in this
situation, are required to be tested only if higher ordered ones are proven
efficacious.

Decision paths are thus within, but not between, doses. Figure 1.3 illus-
trates such paths with k doses and m endpoints.

Endpoint 1

Endpoint 2

ppp

Endpoint m

Dose 1

θ11 ≤ δ1

?

θ12 ≤ δ2

?ppp
?

θ1m ≤ δm

Dose 2

θ21 ≤ δ1

?

θ22 ≤ δ2

?ppp
?

θ2m ≤ δm

p p p
p p p

p p p

p p p

Dose k

θk1 ≤ δ1

?

θk2 ≤ δ2

?ppp
?

θkm ≤ δm

FIGURE 1.3: Decision paths for k doses m endpoints, with one path for each
dose going from endpoint 1 to endpoint m.

If a single secondary endpoint is involved, the decision path in Figure 1.3
becomes Figure 1.4 shown below. For notation conveniences, instead of using
the second subscript to index the endpoint, we use superscripts P and S to
denote primary and secondary endpoints.

Given decision paths in Figure 1.4, the parameter space is partitioned in
two stages:
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Low dose path High dose path

HP
01 : θP1 ≤ δP HP

02 : θP2 ≤ δP

? ?

HS
01 : θS1 ≤ δS HS

02 : θS2 ≤ δS

FIGURE 1.4: Decision paths for low and high doses.

Path partition: Partition within each path.

Disjointness partition: Further partition by taking intersections to make
hypotheses between paths disjoint.

Path partition is within each dose i. Starting with the primary endpoint,
we test HP

0i : θPi ≤ δP . If it is rejected, then efficacy in the primary endpoints
has been established.

Then follow the path to the secondary endpoint. But, instead of testing
HS

0i : θSi ≤ δS , we make it disjoint with HP
0i and test H?S

0i : θSi ≤ δS and
θPi > δP . If both HP

0i and H?S
0i are rejected, then we logically conclude efficacy

in both the primary and the secondary endpoints.
Whereas the reason for path partitioning is inference in the secondary

endpoint is irrelevant unless efficacy in the primary endpoint is established,
disjointness partitioning is for proper multiplicity adjustment.

Multiplicity adjustment is needed (only) to the extent that two or more
hypotheses can be true simultaneously. Ask the question, “is it possible that
high dose primary lacks efficacy and simultaneously there is efficacy in high
dose primary but not in high dose secondary?” The answer is “no”, so there
is no need to adjust for multiplicity in testing HP

0i and H?S
0i . However, “is it

possible that high dose primary and low dose secondary lack efficacy?” “Yes
it is”, so that particular multiplicity of two needs to be adjusted for.

To figure out which combination of the path-partitioned null hypotheses
can be true simultaneously, between paths, connect an edge between sub-
spaces of the parameter space that are not disjoint, as illustrated in Figure
1.5. Edges represent hypotheses that can be true simultaneously. (There is no
edge between {θS1 > δS and θP1 > δP } and {θS2 > δS and θP2 > δP }, since the
intersection of these two hypotheses, the ideal situation of having efficacy in
all doses and endpoints, need not be tested.) Take intersections of connected
subspaces to form new hypotheses. The resulting set of hypotheses, as pre-
sented in Table 1.6, partitions the parameter space. Therefore, so long as each
partition hypothesis is tested at level α, the FWER is controlled strongly at
level α. Inferences on which of the m× k combinations of dose and endpoint
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are efficacious are then obtained by collating the results from the (m+1)k−1
tests.

Path Disjointness Path

Low dose High dose

θP1 ≤ δP ?
m1
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No
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?
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?
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θS1 > δS and θP1 > δP θS2 > δS and θP2 > δP

FIGURE 1.5: Graphical representation of two stages of partitioning in the
setting of Figure 1.4.

Specifically, the inference θij > δj is made if all hypotheses implying that
θij ≤ δj could be true are rejected. This includes partitioning hypotheses
which do not explicitly state an inequality for θij . For example, the hypothesis
which states θP1 ≤ δP and θP2 ≤ δP includes the possibility that θSi ≤ δS (as
well as the possibility θSi > δS), and must be rejected before inference on any
secondary endpoint is given.

1.4.3.1 Insights from the path-partitioning principle

The path-partitioning principle is most useful in giving insights into the struc-
ture of multiple testing when there are multiple doses and decision paths. To
actually execute multiple testing when there are decision paths, the Graphical
Approach described in Chapter 5 is perhaps more convenient. We thus focus
on explaining the insights.

Multiplicity adjustment : Inclusion of secondary endpoints in the analysis
may necessitate multiplicity adjustment in inference on the primary endpoint.
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For example, in Table 1.6, one rejects the hypothesis HP
01 if

{θP1 ≤ δP and θP2 ≤ δP }, (1.24)

{θP1 ≤ δP and θP2 > δP and θS2 ≤ δS}, (1.25)

and {θP1 ≤ δP and θP2 > δP and θS2 > δS} (1.26)

are all rejected. Thus, inference on low dose of the primary endpoint (θP1 ) may
need multiplicity adjustment, to account for the possibility that high dose
of the secondary endpoint may lack efficacy (θS2 ≤ δS in (1.25)). The mere
presence of high dose secondary endpoint necessitates multiplicity adjustment
in testing for efficacy in low dose primary, at least initially.

Note however, this multiplicity adjustment is removed if data shows effi-
cacy in the secondary endpoint at high dose (i.e., if the partition hypothesis
(1.25) is rejected). In fact, partitioning makes transparent that, if efficacy at
a dose has been established for all endpoints, then that dose needs no longer
be included in multiplicity adjustment.

This last realization from Liu and Hsu (2009), which some have come
to phrase as “there is no need to leave money on the table”, explains a key
difference from Figure 2 in Bretz et al. (2009), to Figure 1 in Bretz et al. (2011)
and Figure 6.3(a) in Chapter 5 on Graphical Approach in this Handbook, that
there is an arrow from the bottom node of each path to the top node of the
other path in the latter two figures, as the Graphical Approach to this problem
has evolved.

Appearance: Whether one readily sees it or not, inference on the primary
endpoint may depend on observations on a secondary endpoint (at a differ-
ent dose), because initially one must account for possibilities such as efficacy
is lacking for the primary endpoint at high dose and for the secondary end-
point at low dose. However, this multiplicity can be removed if data indicates
otherwise.

One can give the appearance that such dependence does not occur, by
choosing not to remove the multiplicity adjustment, even if data indicates it
can be. This is the approach taken in Dmitrienko et al. (2006), Xu et al. (2009),
and Dmitrienko and Tamhane (2011), to ensure “inference made in primary
endpoints not affected by the inference made in secondary endpoints”. We feel
there is no need for such loss of power, for the sake of appearance.

1.4.4 Controlling FWER may be too simplistic for primary-
secondary endpoint problems

The original proof (in Hsu and Berger 1999) that no multiplicity adjustment
is needed to control FWER in testing along a (single) path was in the setting
of dose-response studies. In the setting of testing high dose first, with evidence
of efficacy in high dose, one then tests low dose, there may be one or two Type
I errors. If neither dose is effective, then inferring high dose is effective only
commits one Type I error, while inferring both high dose and low dose as
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effective commits two Type I errors. FWER, being the probability of making
at least one Type I error, counts one or two Type I errors as the same. With
the principal purpose of Hsu and Berger (1999) being to show that most of
the contrast methods that pool information across doses popular then do not
control incorrect decision rate, they viewed this oversimplification of FWER
control as an acceptable first approximation, since those two Type I errors are
of the same kind: “too low is too low”.

However, the ordered endpoints setting is different. In testing Primary and
Secondary endpoints in sequence, unconditional FWER refers to, over many
studies each with a Primary and a Secondary endpoint, roughly how many per-
cent of the studies have incorrect efficacy claim in either Primary or Secondary
or both. However, since testing Primary is for approval, while Secondary test-
ing is for additional labeling claim, we might consider conditional Type I error
rate on testing for efficacy in the Secondary, conditional on inferring efficacy
in the Primary. This conditional error rate is, over many drug submissions
which get approval (and therefore have drug labels), roughly how many per-
cent of the labels have incorrect additional claims (beyond indication), and
might offer useful additional information toward sound decision-making.

1.5 Key Messages of This Chapter

• In multiple comparisons, error rate controls are useful if they trans-
late to controlling the probability of making incorrect decisions.

• One can be confident that the directional error rate is controlled if
the null hypotheses of a multiple test partition the entire parameter
space, but not if the null hypotheses are mere equalities.

• If the null hypotheses partition the entire parameter space, then that
multiple test can be pivoted to give a compatible confidence set.

• Using a compatible confidence set to execute a multiple test guaran-
tees the directional error rate is controlled.

• Partitioning is also useful in formulating null hypotheses to channel
multiple tests onto pre-specified decision paths.
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Θ1 Θ2 Θ3 Θ4 H01 H02 H03 H04

} } } } X X X X

} } } ⊗ X X X 7

} } ⊗ } X X 7 X

} ⊗ } } X 7 X X

⊗ } } } 7 X X X

} } ⊗ ⊗ X X 7 7

} ⊗ } ⊗ X 7 X 7

} ⊗ ⊗ } X 7 7 X

⊗ } } ⊗ 7 X X 7

⊗ } ⊗ } 7 X 7 X

⊗ ⊗ } } 7 7 X X

} ⊗ ⊗ ⊗ X 7 7 7

⊗ } ⊗ ⊗ 7 X 7 7

⊗ ⊗ } ⊗ 7 7 X 7

⊗ ⊗ ⊗ } 7 7 7 X

⊗ ⊗ ⊗ ⊗ 7 7 7 7

TABLE 1.3: Partition testing of four null hypotheses
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Dose Adjusted for Adjusted for Adjusted for For

{1, 2, 3, 4} {1, 2, 3} {1, 3} {1}

4 0.0061 - - -

3 0.2076 0.1673 0.1217 -

2 0.0991 0.0783 - -

1 0.6911 0.6021 0.4802 0.2949

TABLE 1.4: Adjusted 2-sided |t| p−values facilitating execution of step-down
Dunnett’s method for the Alzheimer study, to be compared with 0.10 for
1-sided FWER ≈ 5%.

Dose |t| p-value |t| p-value |t| p-valued |t| p-value

for {4} for {3} for {2} for {1}

4 0.0016 - - -

3 - 0.0665 - -

2 - - 0.0295 -

1 - - - 0.2949

TABLE 1.5: Unadjusted 2-sided |t| p−values facilitating execution of decision-
path method for the Alzheimer study, to be compared with .10 for 1-sided
FWER = 5%.
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TABLE 1.6: Partition hypotheses following decision paths in Figure 1.4.

Index8 Partition hypothesis Rejection rule

1 θP
1 ≤ δP and θP

2 ≤ δP tP1 > c1 or tP2 > c1

2 θP
1 ≤ δP and θP2 > δP and θS

2 ≤ δS tP1 > c1 or tS2 > c2

θP
1 ≤ δP and θP2 > δP and θS2 > δS tP1 > c3

3 θP1 > δP and θP
2 ≤ δP and θS

1 ≤ δS tP2 > c1 or tS1 > c2

θP1 > δP and θP
2 ≤ δP and θS1 > δS tP2 > c3

θP1 > δP and θP2 > δP and θS
1 ≤ δSand θS

2 ≤ δS tS1 > c1 or tS2 > c1

4 θP1 > δP and θP2 > δP and θS
1 ≤ δSand θS2 > δS tS1 > c3

θP1 > δP and θP2 > δP and θS1 > δS and θS
2 ≤ δS tS2 > c3

Note: 8the index column corresponds to the labels of edges in Figure 1.5.
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