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Abstract

Dose-response studies with multiple endpoints can be formulated as closed testing or par-

tition testing problems. When the endpoints are primary and secondary, whether the order

in which the doses are to be tested is pre-determined or sample-determined lead to different

partitioning of the parameter space corresponding to the null hypotheses to be tested. We use

the case of two doses and two endpoints to illustrate how to apply the partitioning principle to

construct multiple tests that control the appropriate error rate. Graphical representation can be

useful in visualizing the decision process.

1 Historical aspect of dose-response trials in pharmaceutics

Pharmaceutical drug development has long been divided into four Phases with Phase II being the

part of the development cycle where dose response studies are conducted. The goal is usually to
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identify the best dose to use in confirmatory Phase III trials. While this has been the framework

for several decades, there are still many drugs that fail to confirm efficacy and safety in Phase III

(estimates range from 30-50%) with a substantial number of failures attributed to improper dose

selection. Thus, the importance of the design and analysis of dose response studies is as relevant

today as it has ever been.

In the past, efficacy of a new drug was typically demonstrated by showing its superiority to

a placebo (called a negative control). However, in recent years, when treatments known to be

effective exist, and the disease does not cause mortality or irreversible morbidity, efficacy of a new

drug might be defined as superiority or non-inferiority to a known effective treatment (called an

active control). In the case of non-inferiority trials, the determination of non-inferiority might be

based on what is a clinically meaningful difference. See [1]. Even in the case of superiority trials

against a negative control, the definition of superiority might consider risk versus benefit, if there

is toxicity concerns for the drug. (see [2].) Some early discussion of these concepts can be seen in

[3, 4, 5, 6].

Dose-response studies may have multiple endpoints. A primary endpoint is one such that

efficacy of a new drug relative to the control in this single endpoint constitutes evidence of efficacy.

Secondary endpoints are ones that efficacy of a new treatment in any secondary endpoints supports

evidence of efficacy, but by themselves (i.e. in the absence of efficacy in a primary endpoint) do

not constitute evidence of efficacy.

When there are primary and secondary endpoints, inference on the secondary endpoint is given

only if the compound is efficacious for the primary endpoint at that dose. This ordering guides the

selection of test statistics for each intersection hypothesis in closed testing (as in [7]). We give a

different perspective in this article, which is the ordering guides the partitioning of the parameter
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space in using the partitioning principle to construct multiple tests that control the appropriate

FWER.

In some (but not all) dose-response studies, it may be appropriate to pre-determine the order

in which inferences on the doses are given. For example, one might start with the high dose and

proceed to inference on the low dose only if the high dose shows efficacy. We show how this second

“ordering” further guides the partitioning of the parameter space. The resulting partitioning test is

in the form of a decision tree which can be represented graphically.

Interestingly, the joint distribution of t test statistics for multiple endpoints is not what is usually

called the multivariate t distribution. This article discusses the computation of this distribution in

the bivariate case which, to avoid confusion, we call the dual t distribution. We show, for example,

that using algorithms for multivariate t distributions results in slightly liberal critical values, while

computing as if the t statistics were independent results in somewhat conservative critical values.

Section 2 gives a motivating example of a dose-response study with multiple endpoints. Section

3 shows how the partitioning principle forms null hypotheses when inferences are ordered by

dose, and the corresponding multiple test is a step-down test. Section 4 extends the partitioning

principle of forming null hypotheses to when inferences are ordered by dose and by endpoint. The

corresponding multiple test has a graphical representation. That section also contains a study of

issues in the computation of critical values. Section 5 provides a numerical illustration of methods

developed in this article, using the real data example in section 2.
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2 A motivating example for dose-response studies

Consider, for example, [8], a 26-center double-blind trial comparing the effect of five doses of the

anti-psychotic drug “Seroquel” (Quetiapine) and the placebo with parallel design on a total of 361

patients. For illustration purpose, we will focus on two of the doses (75 mg/day and 600 mg/day)

with the primary endpoint being Clinical Global Impression (CGI) Global Improvement score and

the secondary endpoint being CGI Severity of Illness score. Summary statistics for these two doses

and endpoints are presented in Table 1.

Table 1: Summary statistics of two doses and two endpoints in [8]

Dose

Endpoint 0 mg/day (Placebo) 75 mg/day 600 mg/day

Sample size 51 52 51

CGI Global Improvement score Mean 4.78 4.22 3.58

(Primary) SEa 0.23 0.22 0.23

CGI Severity of Illness score Mean 5.2 4.8 4.4

(Secondary) SE 1.2 1.3 1.5

aStandard error

Throughout the paper, the placebo (0 mg/day), low dose (75 mg/day) and high dose (600

mg/day) groups will be indexed as i = 0, 1, 2. Primary and secondary endpoints will be indexed

by superscripts L = P, S. For discussion involving only the primary endpoint, the superscript P

will be dropped for convenience.

Let µL
i denote the mean response of dose group i for endpoint L, i = 0, 1, 2, L = P, S. Define
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θL
i = µL

i − µL
0 as the true mean difference between dose group i and the placebo for endpoint L,

i = 0, 1, 2, L = P, S. Let δL denote the clinically meaningful difference for endpoint L, L = P, S.

The family of null hypotheses of interest consists of four null hypotheses with the first two in (1)

concerning primary endpoint and the second two in (2) concerning secondary endpoint.

HP
01 : θP

1 ≤ δP vs. HP
a1 : θP

1 > δP

HP
02 : θP

2 ≤ δP vs. HP
a2 : θP

2 > δP

(1)

HS
01 : θS

1 ≤ δS vs. HS
a1 : θS

1 > δS

HS
02 : θS

2 ≤ δS vs. HS
a2 : θS

2 > δS

(2)

Assume the samples from dose group i for endpoint L, Y L
i1 , ..., Y L

ini
, i = 0, 1, 2, L = P, S, come

from a model:

Y L
ir = µL

i + εL
ir, i = 0, 1, 2, r = 1, ..., ni, L = P, S, (3)

where




εP
ir

εS
ir


 i.i.d. ∼ N







0

0


 ,




(σP )2 ρσP σS

ρσP σS (σS)2





 i = 0, 1, 2, r = 1, ..., ni.

Define TL
i , i = 1, 2, L = P, S, in (4) to be the t-statistic for testing the null hypothesis HL

0i, i =

1, 2, L = P, S,

TL
i =

Ȳ L
i· − Ȳ L

0· − δL

σ̂L
√

1/ni + 1/n0

i = 1, 2, L = P, S, (4)

where Ȳ L
i· = 1

ni

ni∑
r=1

Y L
ir , σ̂L =

√P2
i=0

Pni
r=1(Y L

ir−Ȳ L
i· )2P2

i=0(ni−1)
, i = 0, 1, 2, L = P, S.

The purpose of dose-response studies is to find which doses are effective. Control of multiple

testing error rate should control the probability of incorrectly inferring a dose is efficacious for
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some endpoint when in fact it is not. In this situation, controlling the False Discovery Rate (FDR)

will not control this probability (see [9]), while controlling the Familywise Error Rate (FWER)

strongly for appropriately formulated null hypotheses will. We thus consider methods that strongly

control FWER in this article.

With four null hypotheses in (1) and (2), a straight-forward application of the closed testing

principle would test 24 − 1 = 15 intersection null hypotheses to control FWER. However, we will

show that if inferences are ordered by both endpoints and doses, then testing only four (disjoint)

null hypotheses according to the partitioning principle controls FWER. These hypotheses are tested

in three steps, with multiplicity adjustment involved in only one of the steps. When there are k > 2

doses and m > 2 endpoints, a similar step-down procedure could in theory be developed following

the same principle.

3 Multiple tests construction using the partitioning principle

The purpose of this article is to demonstrate how to use the partitioning principle, a fundamental

multiple tests constructing technique, to construct multiple tests when there are multiple doses and

multiple endpoints. We illustrate the idea with the two hypotheses in (1), concerning the primary

endpoint first.

3.1 Closed testing to step-down doses according to sample responses

The closed testing technique of [10] tests all possible non-empty intersections of the hypotheses in

(1), leading to the three hypotheses in (5), each at level-α:

H∩
0 : θ1 ≤ δ and θ2 ≤ δ (Neither dose is efficacious)
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H01 : θ1 ≤ δ (Low dose is not efficacious) (5)

H02 : θ2 ≤ δ (High dose is not efficacious)

The logical implications of testing are:

• If H∩
0 is not rejected, no inference is given even if H01 or H02 or both are rejected, because

H∩
0 implies H01 and H02.

• If only H∩
0 and H01 (H02) are rejected but not H02 (H01), then infer low (high) dose is

efficacious.

• If all three hypotheses are rejected, then infer both doses are efficacious.

We use t-statistics T1 and T2 defined in (4) (with superscript P dropped) to test the three intersection

hypotheses in (5) with critical values dα,2,ν (the upper α quantile of Dunnett distribution with 2 and

ν =
∑2

i=0(ni−1) degrees of freedom) and tα,ν (the upper α quantile of t distribution with ν degrees

of freedom). Let (1), (2) denote the random indices such that T(1) < T(2), then the rejection rules

can be shown in Table 2.

Table 2: Decision rules for closed testing with two doses single primary endpoint

Hypothesis Rejection rule Test level

H∩
0 : θ1 ≤ δ and θ2 ≤ δ T(2) > dα,2,ν α

H01 : θ1 ≤ δ T1 > tα,ν α

H02 : θ2 ≤ δ T2 > tα,ν α

Since the critical values satisfy dα,2,ν > tα,ν , a step-down procedure with sample-determined

steps exists, as follows:
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• Step 1: If T(2) > dα,2,ν , infer dose (2) is efficacious and go to step 2; else stop.

• Step 2: If T(1) > tα,ν , infer dose (1) is efficacious and stop; else stop.

3.2 Partition to step-down doses

If higher dosage is expected to be more efficacious, then one may choose to always test the high

dose first. If high dose is effective, then proceed to test low dose; otherwise, stop. We can formally

state this pre-determined sequence of testing as:

Condition A (order in doses): The low dose can not be claimed efficacious unless the high dose

has shown evidence of efficacy.

The partitioning principle of [11] and [12] is a general principle for constructing multiple tests.

Under condition A, [13] partition the null space, {θ ∈ R2|θ1 ≤ δ or θ2 ≤ δ} into two disjoint sub-

spaces {θ ∈ R2|θ2 ≤ δ} and {θ ∈ R2|θ1 ≤ δ and θ2 > δ} corresponding to the two hypotheses:

H↓
02 : θ2 ≤ δ ( High dose is not efficacious)

H↓
01 : θ1 ≤ δ and θ2 > δ ( Low dose is not efficacious but high dose is)

(6)

The logical implications of testing are:

• If H↓
02 is not rejected (regardless of H↓

01), then no inference is given, since “neither dose is

efficacious” (which is contained in H↓
02) is not rejected.

• If H↓
02 and H↓

01 are rejected, then since the union of H↓
02 and H↓

01 is “either low dose or high

dose is not efficacious”, the implication is “both high dose and low dose are efficacious”.

• If H↓
02 is rejected but H↓

01 is not rejected, then one infers high dose is efficacious.
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The interesting thing is, in testing H↓
0i, i = 1, 2 simultaneously, no multiplicity adjustment is

needed to control FWER, the probability of rejecting any true null hypothesis. This is because the

null spaces of H↓
0i, i = 1, 2 are disjoint. In other words, at most one null hypothesis can be true: it

cannot be the case that high dose is ineffective (H02) and that high dose is effective but low dose is

ineffective (H01), for example. We thus test each H↓
0i, i = 1, 2, at level-α.

Level α tests for each H↓
0i, i = 1, 2, are of course not unique. Note, however, a level-α test

for H01 : θ1 ≤ δ is also a level-α test for H↓
01 : θ1 ≤ δ and θ2 > δ. For example, a test which

rejects no more than 5% of the time when low dose is ineffective, regardless of whether high dose

is effective, will reject no more than 5% of the time in particular when low dose is ineffective and

high dose is effective.

So the simplest level-α test for H↓
0i is to use a one-sided two-sample size α t-test based on

Ti, i = 1, 2 defined in (4) for each H↓
0i as shown in Table 3.

Table 3: Decision rules for partition testing to step-down doses

Hypothesis Rejection rule Test level

H∩
0 : θ2 ≤ δ T2 > tα,ν α

H01 : θ1 ≤ δ and θ2 > δ T1 > tα,ν α

In terms of the rejection rules in Table 3, the pre-determined D-steps (D stands for doses)

proceeds as follows.

• Step 1: If T2 > tα,ν , infer high dose is efficacious and go to step 2; else stop.

• Step 2: If T1 > tα,ν , infer low dose is efficacious and stop; else stop.
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Note that, even though the method above controls FWER regardless of whether the shape of the

true response function, it is recommended only when the response is expected to be monotonically

increasing (for otherwise it might stop too soon and miss an efficacious dose).

4 Partition testing with two doses and two endpoints

Suppose the dose-response study has both a primary endpoint and a secondary endpoint, so that

the family of null hypotheses of interest includes both those in (1) and (2). We will show that, in

addition to stepping through doses, the partitioning principle can also be used to derived multiple

tests that step through endpoints in a pre-determined sequence.

4.1 Partition to step-down endpoints

Multiple testing procedures for dose-response studies with a primary endpoint and hierarchically

ordered secondary endpoints were developed in [7]. In the case of two doses and two endpoints

(one secondary endpoint), the procedure has to satisfy the condition that for the same dose, the

secondary endpoint is tested only if primary endpoint is claimed to be efficacious, which is formally

stated as:

Condition B (order in endpoints): For the same dose, a secondary endpoint can not be claimed

efficacious unless its primary endpoint has been shown to be efficacious.

Within each endpoint, Dunnett’s method was used in [7] to adjust multiplicity for multiple

doses. The FWER of the whole procedure was controlled at α using the principle of closed testing.

Figure 1 is a graphical representation of their procedure with two doses and two endpoints.

The procedure in [7] can be reproduced by partitioning the parameter space with constraints on
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Figure 1: Decision process in [7]

Step 1: T P
1 > dα,2,ν? T P

2 > dα,2,ν?

no noyes yesPPPPPPPPPPPP

³³³³³³³³³³³³
?
mS

?? ? ?

Step 2: T S
1 > c? T S

1 > dα,2,ν? T S
2 > dα,2,ν? T S

2 > c?

?

yes

?

no

mS

?

yes

?

no

mS

no noyes yesPPPPPPPPPPPP

³³³³³³³³³³³³

- ¾

? ?

?
mS

Infer low dose is
efficacious for

primary endpoint

Infer both doses are
efficacious for

primary endpoint

Infer high dose is
efficacious for

primary endpoint

Infer low dose is
efficacious for

secondary
endpoint

Infer both doses
are efficacious
for secondary

endpoint

Infer high dose is
efficacious for

secondary
endpoint

S means “Stop”, c is calculated based on sample correlation between endpoints.

ordered endpoints for each dose, similar to partitioning to step-down through the doses technique

as illustrated in section 4. For example, for high dose, we would test the following two hypotheses

in a step-down fashion (pre-determined E-steps).

HP↓
02 : θP

2 ≤ δP (Primary endpoint is not effective)

HS↓
02 : θS

2 ≤ δS and θP
2 > δP (Secondary endpoint is not efficacious, but primary endpoint is)
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4.2 Partitioning to step-down both doses and endpoints

The procedure developed in [7] steps through the endpoints in a pre-determined sequence, satisfy-

ing condition B, but not necessarily steps through the doses in a pre-determined sequence.

To step through both doses and endpoints, we test the following four partition hypotheses in a

step-down fashion (pre-determined DE-steps):

• Step 1: Test HP↓
02 : θP

2 ≤ δP (High dose is not effective for primary endpoint).

– If rejected, infer high dose for the primary endpoint is effective and proceed to step 2;

else stop.

• Step 2: Test two hypotheses:

HP↓
01 : θP

1 ≤ δP and θP
2 > δP (Low dose is not effective, but high dose is effective for

primary endpoint)

HS↓
02 : θS

2 ≤ δS and θP
2 > δP (High dose is not effective for secondary endpoint, but is

effective for primary endpoint)

– If both hypotheses are rejected, infer both doses are effective for primary endpoint,

high dose is also effective for secondary endpoint and proceed to the next step.

– Otherwise, if only HP↓
01 is rejected, infer both doses are effective for primary endpoint

and stop.

– If only HS↓
02 is rejected, infer high dose is effective for both endpoints and stop.

• Step 3: Test HS↓
01 : θS

1 ≤ δS and θS
2 > δS and θP

1 > δP and θP
2 > δP (Low dose is

not effective for secondary endpoint, but is effective for primary endpoint and high dose is
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effective for both endpoints.)

– If rejected, infer both doses are effective for both endpoints and stop. Otherwise stop.

The direction of these steps is presented in Table 4:

Table 4: Direction of the pre-determined DE-steps

Endpoint\Dose Low High

Primary Step 2b ← Step 1

↓ ↓

Secondary Step 3 ← Step 2b

bProceed only if both hypotheses in step 2 are rejected

4.2.1 Decision tree

The rejection rules for these hypotheses in each step are presented in Table 5 in the form of usual

t-statistics TL
i , i = 1, 2, L = P, S, as defined in (4).

Table 5: Critical values for the pre-determined DE-steps

Step Hypothesis Rejection rule Test level

1 HP↓
02 : θP

2 ≤ δP T P
2 > c1 α

2 HP↓
01 : θP

1 ≤ δP and θP
2 > δP T P

1 > c2 MAc

HS↓
02 : θS

2 ≤ δS and θP
2 > δP T S

2 > c2 MA

3 HS↓
01 : θS

1 ≤ δS and θS
2 > δS and θP

1 > δP and θP
2 > δP T S

1 > c1 α

cMultiplicity adjustment needed

13



For step 1 and 3, the simplest choice of critical value c1 is tα,ν . For step 2, since the null spaces

of HP↓
01 and HS↓

02 are not disjoint, we need to adjust for multiplicity to make the FWER for the

whole procedure controlled at level α.

The decision tree of this step-down procedure with pre-determined DE-steps is presented in

Figure 2.

Figure 2: Decision tree for pre-determined DE-steps

Step 1: T P
2 > c1? no - mS
yes

? ?

Step 2: T P
1 > c2? T S

2 > c2?

no noyes yesPPPPPPPPPPPPP

³³³³³³³³³³³³³

?
mS -¾

?

Step 3: T S
1 > c1?

?
yes

-no mS

Infer high dose is efficacious
for primary endpoint

Infer low dose
is efficacious for
primary endpoint

and stop

Infer high dose
is efficacious for

secondary endpoint
and stopInfer high dose is efficacious

for secondary endpoint
and low dose is efficacious

for primary endpoint

Infer both doses are efficacious
for both endpoints

4.2.2 Computing the critical value c2

According to Table 5, we need to find the critical value c2 accounted for multiplicity for the two

hypotheses in step 2. That is, one needs to focus on the joint distribution of (T P
1 , T S

2 ). Notice
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that between doses, the observations are independent, but within a dose, observations between

endpoints are dependent, the numerators as well as the denominators of T P
1 and T S

2 are correlated

through endpoints for the same dose. For one-sided tests, with the rejection rule of the form in

(7), the supremum of the probability is obtained at the boundary values (involving θP
1 and θS

2 only,

since neither T P
1 nor T S

2 involves θP
2 ). The critical value c2 needs to satisfy:

1− α ≤ 1− sup
θP
1 ≤δP andθS

2≤δS

Prρ
{
T P

1 > c2 or T S
2 > c2

}

= Prρ

{
Ȳ P

1· − Ȳ P
0· − θP

1

σ̂P
√

1/n1 + 1/n0

≤ c2 and
Ȳ S

2· − Ȳ S
0· − θS

2

σ̂S
√

1/n2 + 1/n0

≤ c2

}

= Prρ

{
Z1

σ̂P /σP
≤ c2 and

Z2

σ̂S/σS
≤ c2

}
(7)

=

∫ ∞

0

∫ ∞

0

Prρ {Z1 ≤ c2s1 and Z2 ≤ c2s2} γρ,ν(s1, s2)ds1ds2 (8)

where (Z1, Z2) = (
Ȳ P
1· −Ȳ P

0· −θP
1

σP
√

1/n1+1/n0

,
Ȳ S
2·−Ȳ S

0·−θS
2

σS
√

1/n2+1/n0

) with mean 0 = (0, 0), variance 1 and covariance

ρ/(
√

(n0/n1 + 1)(n0/n2 + 1)) (= ρ/2 in the balanced case), γρ,ν(s1, s2) is the joint density of

( σ̂P

σP , σ̂S

σS ).

Note that the definition of a bivariate t distribution, as originally introduced by [14] and com-

puted by the ProbMC function in SAS and the qmvnorm function in the R package mvtnorm,

requires the denominators in (7) to be the same random variable σ̂P ≡ σ̂S , which is not the case

here. In fact, computing (7) as if the distribution were bivariate t overestimates the probability,

resulting in somewhat liberal critical values, as we will demonstrate. To avoid confusion, we call

the distribution of (T P
1 , T S

2 ) the dual t distribution. (This distribution was studied by [15].)

The probability (8) involves the unknown parameter ρ. Below we describe five ways of approx-

imating (8). The first four methods (normal, bivariate t, dual t and independent standard errors)

require ρ be known or approximated. The last method computes by pretending T P
1 and T S

2 are
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independent, which we prove results in a conservative critical value.

Normal approximation

If the sample sizes n1, n2 are large, by Slutsky’s Theorem, σ̂P /σP and σ̂S/σS converge in prob-

ability to one, then the joint distribution of (T P
1 , T S

2 ) (under the true mean difference) is asymptot-

ically bivariate normal as (Z1, Z2).

Bivariate t distribution

Assume σ̂P

σP and σ̂S

σS are perfectly correlated, or they are the same, the situation coincides with

the bivariate t case. Specifically, the probability in (7) reduces to

∫ ∞

0

Prρ {Z1 ≤ c2s and Z2 ≤ c2s} γν(s)ds

where γν(s) is the density of
√

χ2
ν/ν, and ν =

∑2
i=0(ni − 1) is the degrees of freedom.

Dual t distribution

It can be shown that σ̂P

σP and σ̂S

σS are diagonal elements of a Wishart random matrix (see Ap-

pendix). We use simulations from a Wishart distribution (which depends on ρ, the correlation

between endpoints from a single individual) and Monte Carlo methods to approximate the proba-

bility based on exact dual t distribution of the test statistics(T P
1 , T S

2 ).

Independent Standard Errors σ̂P , σ̂S

The difficulty in computing (7) is caused, in part, by pooling data across doses in estimating

the standard errors σP , σS , resulting in the denominators of test statistics (T P
1 , T S

2 ), ( σ̂P

σP , σ̂S

σS ) being
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correlated. One can obtain a conservative upper bound of c2 (see Theorem 1) in solving (9) = 1−α

for c2 by pretending σ̂P

σP and σ̂S

σS are independent, where (9) can be viewed as a simplified version

of (8).

∫ ∞

0

∫ ∞

0

Prρ {Z1 ≤ c2s1 and Z2 ≤ c2s2} γν(s1)γν(s2)ds1ds2 (9)

Theorem 1 Probability (7) is greater when σ̂P

σP and σ̂S

σS are correlated than when they are indepen-

dent.

Proof of Theorem 1: We first condition on Z1 and Z2, and note c2 > 0

Prρ

{
Z1

σ̂P /σP
≤ c2 and

Z2

σ̂S/σS
≤ c2

}

= E(Z1,Z2)

[
Prρ

{
z1

σ̂P /σP
≤ c2 and

z2

σ̂S/σS
≤ c2

∣∣∣∣(Z1, Z2) = (z1, z2)

}]

= E(Z1,Z2)

[
Prρ

{
z1

σ̂P /σP
≤ c2 and

z2

σ̂S/σS
≤ c2

}]

= E(Z1,Z2)

[
Prρ

{
σ̂P /σP ≥ z1

c2

and σ̂S/σS ≥ z2

c2

}]
(10)

Since σ̂P

σP and σ̂S

σS are associated (see Theorem 6.1, [16]), for any given Z1 and Z2

Prρ

{
σ̂P /σP ≥ z1

c2

and σ̂S/σS ≥ z2

c2

}
≥ Pr

{
σ̂P /σP ≥ z1

c2

}
Pr

{
σ̂S/σS ≥ z2

c2

}
(11)

The result follows. ¤

Independent t statistics T P
1 , T S

2

To further break down the four dimensional integral in (9), we add the assumption of indepen-

dent numerators (Z1, Z2) of (T P
1 , T S

2 ) in addition to independent denominators, which is reason-

able since the correlation between Z1 and Z2 is only ρ/2 in the balanced case. This method is more

conservative then the previous method as shown in Theorem 2.
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Theorem 2 The probability (9) assuming σ̂P

σP and σ̂S

σS are independent is greater than the probabil-

ity assuming test statistics (T P
1 , T S

2 ) are independent. (This is equivalent to further assuming the

numerators of (T P
1 , T S

2 ), (Z1, Z2) are independent.)

Proof of Theorem 2:

Assume independence of σ̂P

σP and σ̂S

σS , we have

Prρ

{
Z1

σ̂P /σP
≤ c2 and

Z2

σ̂S/σS
≤ c2

}

=

∫ ∞

0

∫ ∞

0

Prρ {Z1 ≤ c2s1 and Z2 ≤ c2s2} γν(s1)γν(s2)ds1ds2

since Cov(Z1, Z2) = ρ/
√

(n0/n1 + 1)(n0/n2 + 1) > 0

By Slepian’s inequality (Corollary A.3.1 on p. 229 of [17])

≥
∫ ∞

0

∫ ∞

0

Pr {Z1 ≤ c2s1}Pr {Z2 ≤ c2s2} γν(s1)γν(s2)ds1ds2

=

∫ ∞

0

Pr {Z1 ≤ c2s1} γν(s1)ds1

∫ ∞

0

Pr {Z2 ≤ c2s2} γν(s2)ds2

= Pr
{

Z1

σ̂P /σP
≤ c2

}
Pr

{
Z2

σ̂S/σS
≤ c2

}

= Pr
{
T P

1 ≤ c2

}
Pr

{
T S

2 ≤ c2

}
¤

The degrees of conservatism for the methods introduced above are compared in terms of critical

value c2 for different combinations of correlation between endpoints ρ and error degrees of freedom

ν in Table 6. Critical values for the dual t and independent standard errors methods are based on

100,000 simulations.

As shown in Table 6, for each combination of ρ and ν, the normal approximation is somewhat

liberal and the bivariate t approximation is slightly liberal. Assuming independence of σ̂P

σP and σ̂S

σS

is slightly conservative, while assuming independence of t statistics is somewhat conservative. It

should be noted that, in the setting of simultaneous efficacy and safety studies, [19] considered
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Table 6: Comparing conservatism in terms of critical value c2

ρd

ν Method 0 0.2 0.4 0.6 0.8

Bivariate te 2.0015 1.9972 1.9913 1.9833 1.9730

50 Dual tf 2.0026 1.9988 1.9934 1.9851 1.9741

Ind. SE 2.0028 1.9988 1.9940 1.9866 1.9771

Ind. T 2.0028 2.0028 2.0028 2.0028 2.0028

Bivariate t 1.9777 1.9737 1.9682 1.9607 1.9507

100 Dual t 1.9783 1.9744 1.9692 1.9617 1.9513

Ind. SE 1.9783 1.9745 1.9694 1.9623 1.9527

Ind. T 1.9783 1.9783 1.9783 1.9783 1.9783

Bivariate t 1.9660 1.9622 1.9569 1.9495 1.9398

200 Dual t 1.9659 1.9627 1.9572 1.9498 1.9401

Ind. SE 1.9664 1.9628 1.9573 1.9503 1.9408

Ind. T 1.9664 1.9664 1.9664 1.9664 1.9664

∞ Normalg 1.9545 1.9508 1.9456 1.9385 1.9289

dNote ρ refers to the correlation between endpoints for a single individual. The correlation between numer-

ators (Z1, Z2) of the test statistics, is assumed to be ρ/2 in the balanced case.

eThe critical values of bivariate t are obtained by qmvt function in R package mvtnorm.

fWishart is generated first using Bartlett’s decomposition and then appropriately transformed (see [18]).

gThe bivariate normal quantiles are obtained by qmvnorm of R package mvtnorm.
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using the Bonferroni inequality and the bootstrap technique to compute such probabilities.

5 Analysis of the anti-psychotic drug data

We illustrate the step-down procedure with pre-determined DE-steps using the anti-psychotic drug

example introduced at the beginning of the paper with δP = δS = 0. Using pooled standard error

from these three groups, the t-statistics corresponding to each dose and endpoint and the error

degrees of freedom are:

T P
1 = −1.7499, T P

2 = −3.7318, T S
1 = −0.2116, T S

2 = −0.4212 and ν = 151.

If we want to control the FWER at 5% level, then c1 = t.05,151 = 1.6550, while c2 = 1.9702,

based on the independent t method (which is appropriate because the correlation is unknown).

Note in this particular example, a lower score indicates better drug effect. To make it consistent

with our hypotheses set up, we take the negatives of the t-statistics and then apply our procedure.

• Step 1: Is 3.7318 > 1.6550? Yes, go to step 2.

• Step 2: Is 1.7499 > 1.9702 or 0.4212 > 1.9702? No, stop.

So infer high dose (600 mg/day) is efficacious for primary endpoint only, and no evidence of

efficacy can be made for low dose (75 mg/day).

6 Conclusion

In this paper, we present a systematic way of constructing null hypotheses by partitioning the

parameter space according to conditions that order inferences by dose (high to low), or endpoint

(primary to secondary), or both. The hypotheses so constructed automatically form step-down
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procedures (pre-determined D-steps, E-steps, or DE-steps) and control the proper error rate at

a pre-specified level. This way of tests construction can be generalized to situations with k > 2

doses and m > 2 endpoints. The technique is as follows. Start by writing down the null hypotheses

whose rejections correspond to desired inferences on primary and secondary endpoints. Then,

following stated conditions for the decision process, make each null hypothesis in a subsequent

step disjoint from null hypotheses in previous steps (by removing from it the union of the null

hypotheses whose rejections lead up to it). Adjust for multiplicity within a step (only) if the null

hypotheses are not disjoint, but do not adjust for multiplicity between steps.

An important issue in multiple endpoints problems is how to deal with correlations among the

test statistics induced by correlations among measurements on the multiple endpoints. We made a

systematic study of liberalism and conservatism of five approximation methods.

Graphical representation makes the decision process clear and easy to understand. Multiplicity

adjustment may be needed for some steps but not all. There are two general rules. First, if there are

two or more statistics involved in one box, then multiplicity adjustment may be needed. Second,

if there are two or more branches from a box, and the hypotheses corresponding to these boxes are

not disjoint, then further multiplicity adjustment may be needed among those boxes.
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Appendix

Model for dose-response studies with two endpoints

Suppose we have samples Y ′
0r = (Y P

0r , Y
S
0r), r = 1, ..., n0 from a placebo group, and Y ′

1r =

(Y P
1r , Y

S
1r), r = 1, ..., n1, Y ′

2r = (Y P
2r , Y

S
2r), r = 1, ..., n2 from two dose groups, measuring two

endpoints. Let µ0 = (µP
0 , µS

0 )′, µ1 = (µP
1 , µS

1 )′, µ2 = (µP
2 , µS

2 )′ be the group means, Σ =


(σP )2 ρσP σS

ρσP σS (σS)2


 be the covariance matrix of εn, the nth row of ε, and 1n be a column vector

of 1s of length n. The model can be written in the following form:

Y =




Y0

Y1

Y2




=




Y P
01 Y S

01

...
...

Y P
0n0

Y S
0n0

Y P
11 Y S

11

...
...

Y P
1n1

Y S
1n1

Y P
21 Y S

21

...
...

Y P
2n2

Y S
2n2




=




1 0 0

...
...

...

1 0 0

0 1 0

...
...

...

0 1 0

0 0 1

...
...

...

0 0 1







µP
0 µS

0

µP
1 µS

1

µP
2 µS

2




+ ε = X




µ′0

µ′1

µ′2




+ ε

The projection matrix H =




1
n0

1n01
′
n0

0 0

0 1
n1

1n11
′
n1

0

0 0 1
n2

1n21
′
n2




=




H0 0 0

0 H1 0

0 0 H2




.
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I−H =




I −H0 0 0

0 I −H1 0

0 0 I −H2




and NΣ̂ = NY′(I−H)Y = N
∑2

i=0 Y′
i(I −Hi)Yi

By Result 7.10. on p. 390 of [20], NΣ̂ follows the Wishart distribution W2(N − 3, Σ), where

N =
∑2

i=0 ni, and N − 3 is the degrees of freedom.

Notice, the diagonal elements of NΣ̂ are (N − 3)(σ̂P )2 and (N − 3)(σ̂S)2, where σ̂P =
√P2

i=0

Pni
r=1(Y P

ir−Ȳ P
i· )2

N−3
and σ̂S =

√P2
i=0

Pni
r=1(Y S

ir−Ȳ S
i· )2

N−3
. To obtain the joint distribution of ( σ̂P

σP , σ̂S

σS ),

let U = diag{(σP )−1, (σS)−1}, then NU ′Σ̂U ∼ W2


N − 3,




1 ρ

ρ 1





 with diagonal ele-

ments (N − 3)( σ̂P

σP )2 and (N − 3)( σ̂S

σS )2.

26


