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Abstract

In biology, it is commonly of interest to investigate the evolutionary pat-

tern that gave rise to an existing group of individuals, such as species or

genes. This pattern is most often represented pictorially by a phylogenetic

tree. Many methods of inferring evolutionary patterns have been proposed,

but as advances in computational capabilities have made Bayesian inference

more approachable, it has become an increasingly popular technique for phy-

logenetic inference.

In Bayesian inference, it is often the case that the posterior density cannot

be written out in its entirety due to the intractability of the normalizing con-

stant. One way of working around this is to use a Markov chain Monte Carlo

(MCMC) method. The idea is that after several (possibly many) iterations,

the chain has approximately converged to its stationary distribution, namely,

the posterior distribution. After these initial iterations, subsequent steps of

the chain represent an approximate sample from the posterior distribution,

thus enabling Bayesian inference.

The biggest question one faces when using MCMC methods is the question

of how long the chain should be run before sampling can begin, i.e., the mixing

time of the chain. Many methods exist that aim to answer this question by
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using the output of the chain, but these methods can only give indications that

the chain has not converged. They cannot be used to conclude that a Markov

chain has converged.

In this dissertation, we first provide upper bounds on the mixing times

of two distinct Markov chains. Both chains move about the space of rooted

phylogenetic tree topologies. We also explore methods of bounding the mixing

time for a special case of the Metropolis-Hastings algorithm for inference of the

branch lengths of a phylogenetic tree given the tree topology. We first provide

an upper bound on the mixing time through analytical methods. When this

provides results that do not give a helpful upper bound on the mixing time,

we present a Monte Carlo method. The Monte Carlo method of bounding the

mixing time also gives results that do not lead to a helpful upper bound, but

it does provide a substantial improvement over the analytical methods. This

represents a step forward in the pursuit of an upper bound on the mixing time

of a specific MCMC algorithm for Bayesian inference of the branch lengths of

a phylogenetic tree.
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Chapter 1: Introduction, Background, and Literature

Review

The focus of this work is on inference of the evolutionary pattern among

a group of genes, organisms, or species. We refer to a member of the group

whose evolutionary pattern we aim to infer as a taxon. Inference of the evolu-

tionary pattern among a group of taxa is a common question in biology, and

as a beginning to finding an answer, biologists often use a branching diagram

known as a phylogenetic tree to represent the evolutionary relationships among

the taxa. For a collection of n taxa, such a diagram can be viewed as an acyclic

graph with n external vertices termed leaves or tips, where each tip represents

one taxon, and n − 2 internal nodes of degree 3. A phylogenetic tree may be

rooted or unrooted. If the tree is rooted, then the graph has one internal node,

termed the root, that has degree 2 and identifies the most recent common an-

cestor (MRCA) among the taxa. An illustration of a rooted and an unrooted

trees can be seen in Figure 1.1.

A phylogenetic tree consists of two parts. The first part is the tree topology,

which represents the branching pattern for the tree but gives no information

about the time evolution has taken between the nodes. If there are taxa at
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(a) A rooted tree topology, where
the leaves are labelled with the let-
ters A,B,C,D, and E. The root,
which is the only node with degree
2, has been labelled 0, and the in-
ternal, non-root nodes have been la-
belled with the numbers 1, 2, and 3.
Each of these three nodes has degree
3.

(b) An unrooted tree topology, where
the leaves are labelled with the let-
ters A,B,C,D, and E. The other
three nodes, labelled with the num-
bers 1, 2, and 3, are internal nodes,
and each of them has degree 3.

Figure 1.1: Two types of phylogenetic trees

the tips, the topology is labelled. Otherwise, the topology is unlabelled. For

the rest of this dissertation, we restrict our attention to labelled topologies, so

that any tree topology to which we refer is taken to be labelled. The branch

lengths are the other component of a phylogenetic tree, and they represent

the amount of evolutionary time between an internal node and its immediate

descendant.

We focus on Markov chain Monte Carlo (MCMC) methods of inferring each

of the two parts of a phylogenetic tree. First, we explore the time to conver-

gence of two Markov chains on Tn, the space of n-leaf rooted tree topologies.

Next, we describe methods that can be used to bound the time to convergence

of an MCMC algorithm for Bayesian inference of the branch lengths of the tree
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given the topology and a set of DNA sequence data.

The importance of this topic lies in the frequency with which phylogenetic

trees are used to represent evolutionary relationships. In immunology, knowl-

edge of the ancestry of a particular microorganism can be helpful not only in

determining what adaptations the microbe has developed to current medica-

tions, but also in developing new medications to fight it. Phylogenetic analysis

is also used in forensic epidemiology. For instance, in 1987, three patients of

a particular dentist in Florida became infected with the human immunodefi-

ciency virus (HIV) after visiting the dentist. The dentist was HIV-positive, and

had performed an invasive procedure on each of the three patients. A study

that included phylogenetic analysis (CDC, 1991) suggested that the three pa-

tients were infected by the dentist.

The work detailed in this dissertation finds application in many other ar-

eas, and the widespread employment of phylogenetic analysis highlights the

importance of methods such as the ones detailed below. We begin by provid-

ing information required for a thorough understanding of the work we present.

We first give relevant background on phylogenetic trees, and we follow that

with a brief review of the literature.

1.1 Phylogenetic Trees

This section begins with a description of data used in phylogenetic infer-

ence. This is followed by a discussion of probability models for the evolutionary

process by which one nucleotide base changes to another. We then describe the
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role these models play in likelihood calculation. We close this section by defin-

ing two tree moves that are frequently used in MCMC algorithms for Bayesian

phylogenetic inference.

1.1.1 Data for Use in Phylogenetic Inference

Suppose that we have available a set of present-day taxa, and that the evo-

lutionary pattern among these taxa can be modelled by a phylogenetic tree.

We observe genetic data from these taxa, which are represented by the tips

of the tree, but in general we cannot observe such data at any of the ances-

tral nodes. Several types of genetic data exist, including deoxyribonucleic acid

(DNA) sequences, ribonucleic acid (RNA) sequences, and protein sequences,

but here we focus on DNA sequences. A DNA sequence is a large molecule

that carries genetic information for a specific taxon. DNA is composed of long

strands of bases called nucleotides. There are two types of nucleotides, and

there are two bases of each type. Purines consist of the bases adenine and

guanine, noted A and G, respectively. The pyrimidines are composed of the

other two bases, cytosine (C) and thymine (T). Each place in the sequence

where a base appears is called a site.

Over evolutionary time, the information contained within the same gene in

different taxa changes. These changes may be due to insertions, where during

the DNA replication process, extra nucleotide bases are added to the sequence,

or they may be due to deletions, which are removals of nucleotide bases during

replication. Changes in nucleotide bases may also occur during the replica-

tion process. Point mutations result in the replacement of a nucleotide base
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with another. A point mutation that changes a purine to the other purine or

a pyrimidine to the other pyrimidine is a transition. A point mutation that

changes a purine to a pyrimidine or a pyrimidine to a purine is a transversion.

Each of these three evolutionary events alters genetic material, but to perform

phylogenetic inference, it is necessary to compare portions of DNA sequences

that are the same in a common ancestor. Thus, it is necessary to infer which

portions of the genomes in the taxa appear in the genome of a common ances-

tor. This process is called alignment, and it must be performed on the DNA

sequences before phylogenetic analysis can begin. For a brief survey of align-

ment algorithms, see Li and Homer (2010).

Following alignment, the DNA sequence data can be represented by a table

such as Table 1.1. This table represents a set of simple DNA sequences with

four sites apiece. A tree that has at its leaves the data from Table 1.1 can be

seen in Figure 1.2.

Table 1.1: Table of DNA Sequences for 5 Taxa

Taxon Site 1 Site 2 Site 3 Site 4
Taxon 1 A C C A
Taxon 2 A T C T
Taxon 3 G T T T
Taxon 4 G A T C
Taxon 5 C C C C
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Figure 1.2: A rooted tree with DNA sequence data at the leaves. The inter-
nal nodes are denoted by the integers 0, 6, 7 and 8. The leaves are labelled
1, 2, 3, 4, and 5. The branch lengths are represented by t1, t2, . . . , t8, where the
branch length ti corresponds to the length of the branch terminating at node
i, i = 1, 2, . . . , 8.

One data point Di is a vector of the nucleotide bases in the DNA sequence

for each taxon at the ith site. For example, D1 = (A,A,G,G,C). In other words,

Di corresponds to the ith column of the table. Biologically, Di represents a

set of nucleotides, one from each DNA sequence, that are inferred to have de-

scended from the ith site in the DNA sequence corresponding to a common

ancestor. Each site is assumed to have evolved independently of all the others.

At each of the tips of the tree is one of the DNA sequences in the table, and

these are represented by the rows. Each time there is a split in the tree, an

internal node is present. An internal node represents the most recent common

ancestor among the taxa in the lineage descending from that node. In our
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illustration there are four of these nodes. Between any two nodes, or between

a tip and the node immediately ancestral to that tip, there is a branch having

length that represents the amount of time taken by the evolution from the

most recent ancestral node to the descendant node or tip, where time is taken

to represent the expected number of nucleotide base substitutions per site.

1.1.2 Models of Nucleotide Substitution

Recall that we observe DNA sequences only at the tips of the tree. Our

goal is to infer how, over time, evolution has given rise to the DNA sequences

at the tips, and in order to do so, we need a probabilistic model that describes

the evolutionary process by which one nucleotide base changes to another over

time. Such a model is defined by two parameters. The first of these parameters

is a matrix Q, whose (i, j) entry represents the rate at which the nucleotide

base i changes to the nucleotide base j, where (i, j) ∈ {A,G,C, T}2. Let P(v)

denote a matrix in which the (i, j) entry is the probability that base i changes

to base j over v units of evolutionary time. To see the role of Q in the model,

note that the first derivative of P(v) with respect to v is defined by

P′(v) = lim
h→0+

P(v + h)−P(v)

h
. (1.1)

Before going any further, we note that P(v) does not depend on the point in

time at which the v units of evolutionary time began. This property is known

as time homogeneity, and all of the models we mention here have this property.

The Chapman-Kolmogorov equation says that if a model is time homogeneous,

then for v ≥ 0 and u ≥ 0, P(v+u) = P(v)P(u). Applying this result to (1.1),
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we see that

P′(v) = lim
h→0+

P(v)P(h)−P(v)

h

= P(v) lim
h→0+

P(h)− I

h
.

Letting Q = limh→0+
P(h)−I

h
, we obtain transition probabilities by solving the

differential equation P′(v) = P(v)Q, with initial condition P(0) = I. The

solution to this differential equation is P(v) = eQv. The exponentiation of

Q is not generally available by analytical methods, so numerical methods are

usually required to find P.

The second parameter of the model is a row vector π of equilibrium proba-

bilities of the nucleotide bases. For a nucleotide base j and for all nucleotide

bases i,

πj = lim
v→∞

Pij(v).

In other words, πj represents the limiting probability as v → +∞ of observing

base j in a particular site given base i was in that site v time units ago. Note

that πj does not depend on i. As v → +∞, the limit is equal to the equilibrium

probability of observing the base j, regardless of which base was in that site

v time units ago. A sufficient condition for this limit to exist is that for all

i, j ∈ {A,G,C, T} and for all v ≥ 0, Pij(v) is positive. The model we use

in the rest of the work described in this dissertation satisfies this property, so

the equilibrium probabilities exist. It can be seen that since this parameter is

obtainable from the transition matrix, it is only necessary to specify the rate

matrix in order to completely specify a nucleotide base substitution model.
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However, in practice, the rate matrix and the equilibrium probabilities are

given in the description of a model.

A substitution model is said to be time reversible if it satisfies the detailed

balance condition, that is, for all (i, j) ∈ {A,G,C, T}2,

πiPij(v) = πjPji(v)

for all v ≥ 0. Many of the proposed nucleotide substitution models are time

reversible. The general time reversible (GTR) model of nucleotide base sub-

stitution assumes six different substitution rates a1, a2, a3, a4, a5, and a6. The

rate matrix is

Q =



A G C T

A −J a1πG a2πC a3πT

G a1πA −K a4πC a5πT

C a2πA a4πG −L a6πT

T a3πA a5πG a6πC −M


, where

J = a1πG + a2πC + a3πT

K = a1πA + a4πC + a5πT

L = a2πA + a4πG + a6πT

M = a3πA + a5πG + a6πC .

From a biological perspective, time reversible models are justified because

often, the direction of evolution is unknown. Therefore, it is possible to infer

how long evolution has taken between two nodes, but it is not possible to infer

which of the nodes came first. Mathematically, a reversible model is convenient,
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as it allows for more efficient calculation of phylogenetic likelihood. In addition,

a reversible model often fits real data closely enough that there is little to be

gained by using a more general probability model (Huelsenbeck, 1998). The

most significant caveat of using a reversible model, however, is that, unless

additional assumptions are made, a reversible model does not allow inference

of the placement of the root.

The Jukes-Cantor Model

The work we present relies on the Jukes-Cantor (JC69) model (Jukes and

Cantor, 1969) of nucleotide base substitution. This model is the simplest of

the time reversible models, as it assumes that the rate of substitution between

any two distinct nucleotide bases is equal, so that a1 = a2 = a3 = a4 = a5

= a6 = a. The model also assumes that the equilibrium probability of each

nucleotide base is 1/4. The rate matrix is

Q =



A G C T

A −3 1 1 1

G 1 −3 1 1

C 1 1 −3 1

T 1 1 1 −3


a

4
.

This model is one for which the transition matrix is available analytically, and

the (i, j) entry of the transition matrix is

Pij(v) =

{
1
4
− 1

4
e−av, i 6= j

1
4

+ 3
4
e−av, i = j.

In the work we present, evolutionary time is rescaled so that v represents the

expected number of nucleotide base substitutions per site. When time is scaled
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in this way, a = 4/3, and

Pij(v) =

{
1
4
− 1

4
e−4v/3, i 6= j

1
4
− 1

4
e−4v/3, i = j.

(1.2)

Several other time reversible models have been proposed since the initial

description of the Jukes-Cantor model. The Kimura Two-Parameter (K2P)

model (Kimura, 1980), for instance, assumes that one rate of change for tran-

sitions and a different rate of change for transversions. The K2P model also

assumes that the equilibrium probabilities of the nucleotide bases are equal. If

the rates of change for transitions and transversions are equal, the K2P model

reduces to the JC69 model.

Some other models include the HKY (Hasegawa et al., 1985) model and

the F84 model, which is used in the PHYLIP (Felsenstein, 1989) phylogenetics

software and is formally described by Kishino and Hasegawa (1989). Both

of these models extend the K2P model by relaxing the assumption that the

equilibrium probabilities of the nucleotide bases are equal. The Tamura-Nei

(Tamura and Nei, 1993) model is more general than the K2P, F84, and HKY

models, and it includes all three of these models as special cases.

A useful property of all the models mentioned above is that if a taxon has a

particular DNA sequence, then the DNA sequence that evolves from it over the

next v units of evolutionary time depends only on the current DNA sequence

and the substitutions that occur over the next v time units. The sequences

in the past from which the current DNA sequence evolved do not play a role

in the determination of what occurs after evolution gives rise to the current

sequence. This “memoryless” characteristic is known as the Markov property.
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1.1.3 Likelihood Calculation

Recall that all we have been able to observe are the data at the tips of

the tree. The tree topology is unobserved, as is the branch length vector t.

A common goal is to infer a tree topology and its branch lengths, and the

likelihood function often plays a role in the inference procedure. In order to

calculate the likelihood of a particular tree given our data, we first assume that

evolution occurs independently in different sites and that evolution is indepen-

dent among lineages.

The assumption of independence of evolution among sites allows the like-

lihood to be written as the product of the individual site likelihoods. The

calculation of a site likelihood is completed by finding the joint probability of

observing the nucleotides at the tips of the tree in that site. Since no DNA

sequences are actually observed at the internal nodes, including the root, we

marginalize them by summing over all possible combinations of nucleotide

bases at the internal nodes. For a tree with n taxa, there are n − 1 internal

nodes for which the nucleotide base must be marginalized. Since there are

four possible nucleotide bases in this site for each internal node, there are 4n−1

joint probabilities that need to be calculated and then summed. For a tree

with even a moderately large number of taxa, this method of likelihood calcu-

lation is very inefficient because of the large number of summands. If the data

set is large, the problem is compounded by a large number of site likelihood

calculations.

Felsenstein (1981) presents a peeling algorithm to calculate phylogenetic
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likelihood. This method is much faster than the brute-force method described

in the preceding paragraph. The peeling algorithm makes use of the condi-

tional likelihood L(i)
s (k), which represents the probability of everything that

occurs from node k down the tree, at site i, given the nucleotide base s is in

site i at node k. This method is elegantly described recursively. Suppose node

k has immediate descendants l and m at the bottom ends of branches with

lengths tl and tm respectively. Then

L(i)
s (k) =

(∑
z

Pr(z|s, tl)L(i)
z (l)

)(∑
y

Pr(y|s, tm)L(i)
y (m)

)
. (1.3)

The intuition behind (1.3) is that the assumption of independence between

lineages implies that the probability of everything at or below a node k given

that k has base s at site i is equal to the product of the probabilities of the

corresponding events in the two descendant lineages of k.

The peeling algorithm begins with the assignment of conditional likelihoods

to the tips of the tree. Since data are observed at the tips, the conditional

likelihood of a base s at a particular tip is assigned a value of 1 if s is observed

at that tip and a value of 0 otherwise. Once conditional likelihoods are assigned

at the tips, the calculation of the value in (1.3) is performed for all nodes

that have only tips as their immediate descendants. This calculation is done

successively for the nodes further up the tree, but it may not be carried out for

any node until it has been completed for all descendant nodes. This succession

continues all the way to the root node, say node 0, to obtain L(i)
s (0). The

computation of the site likelihood concludes by summing πsL(i)
s (0) over all of

the nucleotide bases that can occur at the root in site i. If nodes 1 and 2
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are the immediate descendant nodes of the root, then the ith site likelihood is

written as

L(i)(D|t) =
∑
s0

πs0

(∑
s1

Pr(s1|s0, t1)L(i)
s1

(1)

)(∑
s2

Pr(s2|s0, t2)L(i)
s2

(2)

)
.

(1.4)

Since for a full data set, we assume that evolution among sites is independent,

the likelihood for a full data set having N sites is

L(D|t) =
N∏
i=1

L(i)(D|t). (1.5)

The Pulley Principle

A common assumption in phylogenetics is the assumption of a molecular

clock, which means that specific DNA sequences spontaneously mutate at a

constant rate. A consequence of this definition is that in a rooted tree, the

amount of evolutionary time between each leaf and the root is the same. In our

work, we make no such assumptions on the branch lengths. Felsenstein (1981)

demonstrates that for a reversible model with the Markov property and no

constraints on the branch lengths, the placement of the root is inconsequential

to the calculation of the likelihood. In fact, the likelihood depends on the

lengths t1 and t2 of the branches incident to the root only through their sum.

This implies that the likelihood of a rooted tree and its branch lengths is

equivalent to that of an unrooted tree with branch lengths t1 + t2, t3, . . .,

t2n−2. To see this, assume that the data set D has one site per sequence. The
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expansion of the expression on the right-hand side of (1.4) yields

L(D|t) =
∑
s0

∑
s1

∑
s2

πs0Pr(s1|s0, t1)Pr(s2|s0, t2)Ls1(1)Ls2(2).

Since the model is time reversible, we have

πs0Pr(s1|s0, t1) = πs1Pr(s0|s1, t1),

and we obtain the following.

∑
s0

∑
s1

∑
s2

πs0Pr(s1|s0, t1)Pr(s2|s0, t2)Ls1(1)Ls2(2)

=
∑
s1

πs1
∑
s2

∑
s0

Pr(s0|s1, t1)Pr(s2|s0, t2)Ls1(1)Ls2(2).

An application of the Chapman-Kolmogorov Equation yields the result of the

Pulley Principle:

L(D|t) =
∑
s1

∑
s2

πs1Pr(s1|s2, t1 + t2)Ls1(1)Ls2(2).

1.1.4 Local Tree Rearrangements

In Chapter 2 we use tree rearrangements to construct Markov chains on

the space of rooted tree topologies. The two moves we consider here are the

subtree prune and regraft (SPR) and the nearest neighbor interchange (NNI).

An SPR is a tree move in which a branch of the current tree topology, T1, is

broken. The broken branch, along with its associated subtree, is then attached

to another branch to form a new tree topology T2. Figure 1.3 shows a typical

SPR rearrangement. Since SPRs are most often performed on unrooted tree

topologies, we adopt two conventions to handle the case of a rooted topology.
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Figure 1.3: Illustrations of the three types of SPRs: T1 is the initial tree
topology. A dot is placed on a branch of T1 to indicate the branch that is
broken. To the right of T1 are the two subtrees that result from breaking the
noted branch. Reattachments are indicated by a large black dot. T2 is the
tree topology that results from attaching the subtree with leaves D,E, F, and
G to the subtree with leaves A,B, and C to form the indicated node. T3 is
the result of attaching the subtree with leaves A,B, and C to the indicated
branch of the subtree that has leaves D,E, F, and G. T4 is the tree topology
that results by connecting the two subtrees along the edges extending back
from their roots.

First, extend an edge back from the root. A pruned subtree may be reattached

to this edge, and the root of the new topology will be along this extended edge.

An illustration of this can be seen in the forming of T4 in Figure 1.3. Second, it

may also happen that an edge incident to the root of T1 is chosen to be pruned.

When the reattachment occurs below the root of the remaining subtree of T1,

the root of T2 is assumed to be the same as the root of the subtree of T1 that

remained after pruning.
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An NNI is performed by first choosing a non-root internal node v of T1 to

be the target node. The target node has a sibling node s and two child nodes

c1 and c2. Two nodes are chosen at random from among s, c1, and c2, and the

subtrees that descend from the two chosen nodes are interchanged to obtain

T2. A typical NNI is illustrated in Figure 1.4.

Figure 1.4: A typical NNI: The node denoted v on T1 has been chosen as the
target. The children of v are denoted by c1 and c2, and the sibling node is
denoted s. The descendant subtrees of c1 and s have been interchanged to
obtain T2.

1.2 Review of the Literature

In the literature, one finds many examples of phylogenetic analysis in prac-

tice. The information available is usually a set of data consisting of sequences

of genetic material that pertains to the set of taxa about which the evolution-

ary history is of interest. From this information, a common task is to make

an inference about not only the order of ancestry, but also the time required

for one lineage to give rise to a pair of new ones. One study (Kuhnert et al.,
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2000) looks at the Pasteurella multocida species of bacteria, which resides in

the mouths of cats and dogs, and in some cases, is highly pathogenic to humans

who have sustained a bite from a cat or a dog. Kuhnert et al. (2000) infer an

ancestral pattern for Pasteurella multocida and further their analysis to iden-

tify a likely subspecies of this particular bacteria that is responsible for causing

infection and illness in humans. Diezmann et al. (2004) were able to trace the

origin of hemiascomycetes, which are species of yeast that are pathogenic to

humans and several species of plants. They use likelihood methods as well as

Bayesian methodology to infer that all species within the same taxonomic fam-

ily as the hemiascomycetes likely descended from a single ancestor. Aiki-Raji

et al. (2008) used phylogenetic analysis to infer the ancestral genetic charac-

teristics that give rise to the Avian Influenza H5N1 virus in Nigeria.

The benefit of having the ability to infer ancestral patterns of particular

species of organisms is clear. If it is possible to infer the evolutionary origin of

a particular pathogen or virus, this knowledge can be used to gain insight into

how to prevent the microbe from infecting things such as water sources, food

supplies, and humans. Many other examples of such uses of phylogenetics can

be found in the literature. These examples range from inferring the ancestry

of certain microbial organisms such as the pathogen that leads to granuloma

(Herr et al., 1999), the Influenza A virus (Chen et al., 2009), and a broad

class of rapidly-evolving infectious diseases (Ross, 2011; Kuhnert et al., 2011)

to inferring the genealogy of groups of larger organisms such as a class of dogs

(Dowell, 2008) and a family of birds (Christensen et al., 2009).
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The inference of phylogenetic trees has found a purpose in many other ar-

eas, including linguistics (Warnow et al., 2006) and network analysis (Clauset

et al., 2008). In linguistics, two common assumptions are that language evo-

lution follows a tree-like structure and that once a linguistic element changes,

it changes to a state that is not yet in the tree. The second assumption repre-

sents a stark contrast to the assumptions of most models used in phylogenetic

inference. However, Warnow et al. (2006) realized that the latter assumption

is unnecessary. They therefore relaxed the assumption, and the result was a

method of inferring the evolutionary structure of linguistic elements that very

closely resembles the phylogenetic techniques that are employed in a wide va-

riety of other areas.

Clauset et al. (2008) investigate the idea that social networks often follow

a hierarchical structure. They develop a method of simultaneously inferring

the topology of the network and the lengths of the paths in the networks.

This is the same idea as inferring the topology and the branch lengths of a

phylogenetic tree, so the model that Clauset et al. (2008) use is well-suited for

phylogenetic analysis.

The ubiquity of phylogenetic inference emphasizes the need for efficient

methods of inferring evolutionary patterns among a group of taxa. Some of the

earliest methods of phylogenetic inference to be proposed are parsimony meth-

ods (Cavalli-Sforza and Edwards, 1963). The idea is that the preferred evolu-

tionary tree is the one that involves the smallest net amount of evolution. At

the same time, several distance methods arose, including the Unweighted Pair
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Group Method with Arithmetic Mean (UPGMA) (Sokal and Sneath, 1963)

and least squares (Cavalli-Sforza and Edwards, 1967). Today, maximum likeli-

hood (Felsenstein, 1981) and Bayesian methodology are most commonly used

to infer phylogenies from molecular data. Due to the complexity of phyloge-

netic likelihood functions and the intractability of the normalizing constant in

the posterior density of a phylogenetic tree given a data set, MCMC methods

have come to the forefront of phylogenetic analysis.

Our work is dedicated to establishing upper bounds on the mixing time

of certain MCMC algorithms used in Bayesian inference of phylogenetic trees.

We first establish upper bounds on the mixing times of two Markov chains

on Tn. There are several instances in the literature in which this problem

has been addressed. Randall and Tetali (2000) establish an upper bound of

O(n5 log n) on the mixing time of a Markov chain that is similar to one of

the chains we describe by way of a method known as Markov chain compar-

ison. Diaconis and Holmes (2002) bound by O(n log n) the mixing time of a

Markov chain on rooted phylogenetic tree topologies by way of a random walk

on perfect matchings. A perfect matching on a set of size 2n is a partition of

the set into n two-element subsets. They argue that a random walk on the

set of perfect matchings is isomorphic to a random walk on the set of n-leaf

rooted tree topologies. A common method of bounding the time to conver-

gence of a Markov chain on a discrete state space is to bound a closely related

and more approachable quantity known as the relaxation time. Schweinsberg

(2002) bounds by O(n2) the relaxation time of a Markov chain on the space
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of n-leaf unrooted tree topologies via the method of distinguished paths. This

method involves finding a path that connects any two tree topologies and then

bounding the length of the path. His work improves upon the O(n3) upper

bound of Aldous (2000).

In our work, the first of the two chains moves about the space Tn of rooted

tree topologies through tree rearrangements that are less restrictive than those

in the work of Aldous (2000) and Schweinsberg (2002). Our chain travels

Tn via the SPR, while the chain studied by Aldous (2000) and Schweinsberg

(2002) explores the space of unrooted n-leaf tree topologies via a special case

of the SPR in which a transition is completed by the removal of one leaf from

the current tree. This leaf is then attached to another edge of the tree to

complete the transition. The second of the chains in our work traverses Tn via

NNI transitions. We establish a O(n
5
2 ) upper bound on the relaxation time of

the first chain. In the process, we develop a simple path that may be useful in

deciding how to explore the space of rooted tree topologies in problems where

both the tree topology and the branch lengths are unknown. We also establish

an upper bound of O(n4) on the relaxation time of the second chain on rooted

tree topologies. We develop a lower bound of O(n) on the relaxation time of

each of the two chains.

The question of the usefulness of Markov chains that move about the space

of rooted tree topologies, with no regard for branch lengths or any type of

genetic data, is certainly a valid one. After all, one cannot be expected to
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infer any type of evolutionary pattern when no data are available. The an-

swer to this question is that the two chains we study are widely incorporated

into algorithms designed to infer phylogenies from genetic data on the leaves.

For instance, one class of algorithms employs MCMC methods to estimate

the posterior distribution of trees given either DNA sequence data (Li et al.,

2000; Huelsenbeck and Ronquist, 2001) or protein sequence data (Beiko et al.,

2006). Another frequently used phylogenetic inference framework is maximum

likelihood, which requires a search through Tn for the tree(s) that maximize

the likelihood function. Standard methods for searching Tn (e.g. PHYLIP

(Felsenstein, 1989), PAUP* (Swofford, 2002), RAxML (Stamatakis, 2006)) use

moves similar to those defined above. Such tree moves have also been used by

methods that carry out stochastic searches (e.g. SSA (Salter and Pearl, 2001)

and GARLI (Zwickl, 2008)). Other applications of chains similar to ours can

be seen in Yang and Rannala (1997), Guindon and Gascuel (2003), and TCS

(Clement et al., 2000), a software package that is often used in population

genetics. The frequency with which Markov chains on rooted tree topologies

are employed highlights the need for an understanding of their rates of conver-

gence.

The second part of this dissertation focuses on methods for bounding the

mixing time of a particular MCMC algorithm used for inference of the branch

lengths of a given rooted phylogenetic tree, when the tree topology is known

and we have DNA sequence data available. We verify that our chain is ge-

ometrically ergodic by establishing that our chain satisfies a sufficient set of
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three conditions outlined in the work of Fort et al. (2003). We then establish

a minorization condition through analytical methods, and we describe Monte

Carlo methods for establishing minorization and drift conditions. In many

cases, drift and minorization conditions are extremely difficult, or even impos-

sible, to verify. However, if they can be established, then doing so provides the

best hope of finding an upper bound on the mixing time.

The literature shows no lack of approaches to assessing convergence by

way of output-based methods. One technique that was once widely used is the

thick-pen technique (Gelfand and Smith, 1990). This approach to convergence

assessment relies on obtaining density estimates from various sections of the

output of the chain, and these estimates come from portions of the chain which

are spread far enough apart to be considered roughly independent. If these

estimates differ graphically by less than the width of a thick felt-tip pen, the

felt-tip pen technique does not indicate a lack of convergence. Gelman and

Rubin (1992) propose a variance ratio technique that requires analysis of m

independent chains (Xit)
∞
t=0, i = 1, 2, . . . ,m to form an estimate of the distribu-

tion for a chosen summary statistic θ(X), whose value is based on the output

of the chain. This gives a basis for an estimate of how close the process is to

convergence by making use of the posterior variance of the means of the obser-

vations from the m sequences. Brooks and Gelman (1998) generalize this to

estimation of multiple parameters through analysis of the posterior variance-

covariance matrix of the m sequence mean vectors. Other procedures include

methods that rely on the spectral density (Geweke, 1992), diagnostics based
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on the L2 norm (Liu et al., 1993; Roberts, 1994), a diagnostic based on the

L1 norm (Yu, 1995), and the graphical CUSUM method (Yu and Mykland,

1998). For surveys of convergence diagnostics, see Cowles and Carlin (1996)

and Brooks and Roberts (1997). For more recent graphical methods of assess-

ing Markov chain convergence for phylogenetic inference, see Li et al. (2000).

The above convergence diagnostics suffer from several drawbacks. The pri-

mary shortcoming of these methods is that none of them can actually provide

an answer to the question of whether or not the chain has converged to its

stationary distribution. They can only detect features that indicate a lack of

convergence. Many of them are only useful for assessing the convergence of a

small subset of the MCMC algorithms. If a group of convergence diagnostics

are helpful for a particular MCMC algorithm, the estimates of the mixing time

may vary greatly among the different convergence diagnostics. If an MCMC

algorithm mixes slowly, the chosen diagnostic may suggest convergence prema-

turely due to the fact that, since the stationary distribution is unknown, the

diagnostic must measure the distance between the sampled distributions at two

different iterations instead of the distance between either of the sampled dis-

tributions and the stationary distribution. In some instances, the convergence

diagnostics proposed in the literature require running the chain for thousands,

or even millions, of iterations before diagnosing convergence. One may find

it more helpful to have an idea of how long to run the chain before actually

running it. The work in this dissertation represents significant progress in

providing this.

24



1.3 Overview of Dissertation

The remainder of this dissertation is organized into four chapters. Chap-

ter 2 is dedicated to establishing upper and lower bounds on the relaxation

times of two Markov chains on rooted tree topologies. In Chapter 3, we give a

description of a Markov chain that is used to approximate the posterior density

of the branch lengths of a rooted phylogenetic tree given a tree topology and a

data set. We then derive the posterior density, up to a normalizing constant, of

the branch lengths given the tree topology and a set of DNA sequence data at

the leaves, and we show that our chain satisfies the set of conditions given by

Fort et al. (2003), thus ensuring it is geometrically ergodic. Chapter 4 focuses

on methods of obtaining an upper bound on the mixing time of our chain. We

begin by establishing a minorization condition, and then we propose methods

for obtaining a lower bound on the minorization coefficient ε and upper bounds

on the drift coefficients λ and b. The estimates of the drift and minorization

coefficients provide a key step toward obtaining a useful upper bound on the

mixing time of the chain. In an illustrative example, we apply the methods

described to a specified 10-taxon tree. We close Chapter 4 with a discussion

of how the behavior of our MCMC algorithm compares to our expectations.

Chapter 5 provides a discussion of the results outlined in this work, as well as

a brief description of plans for future work.
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Chapter 2: Relaxation Times of Two Markov Chains on

Rooted Phylogenetic Tree Topologies

In this chapter, we describe two Markov chains on the space Tn of n-leaf

rooted phylogenetic tree topologies. The first of these chains moves about

Tn via SPR moves, while the second explores Tn via NNI transitions. We

demonstrate that the relaxation time of the SPR chain is bounded above by

O(n5/2) and that the relaxation time of the NNI chain is bounded above by

O(n4). The chapter concludes with a derivation of a lower bound on the

relaxation times of each of the two chains as well as a description of the link

between the relaxation time and the mixing time of a given Markov chain.

2.1 Preliminaries

This section gives the background that is essential to understanding the

rest of the work presented in this chapter. We begin by providing information

about finite-state Markov chains. This is followed by a statement and proof

of a result that is useful in deriving upper bounds on the convergence rates of

each of the two chains we describe later in the chapter.

Let (Xt)
∞
t=0 be a sequence of random variables, and let Ω be a finite set.
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Then (Xt)
∞
t=0 is a finite-state Markov chain if for all x, y ∈ Ω, all integers t ≥ 1,

and all events Ht−1 =
⋂t−1
s=0 {Xs = xs},

Pr (Xt+1 = y|{Xt = x} ∩Ht−1) = Pr(Xt+1 = y|Xt = x). (2.1)

Let P be a |Ω|×|Ω| square matrix, where |Ω| denotes the number of elements

in Ω. Then P is the transition matrix for (Xt)
∞
t=0 if for all x, y ∈ Ω, the (x, y)

entry of P is

Pxy = Pr(Xt+1 = y|Xt = x).

For an integer k ≥ 1, the k-step transition matrix Pk has as its (x, y) entry

Pk
xy = Pr(Xt+k = y|Xt = x).

Note that since the xth row of P gives the conditional distribution the condi-

tional distribution of Xt+1 given Xt = x for each x ∈ Ω, the sum of the entries

in the xth row of P is 1. A matrix for which the sum of the entries in each row

is 1 is a stochastic matrix.

A desirable property of a finite-state Markov chain is the ability to reach

any state y ∈ Ω from any other state x ∈ Ω in a finite number of steps. This

property is called irreducibility, and it is defined as follows.

Definition 1. A finite-state Markov chain (Xt)
∞
t=0 with state space Ω and tran-

sition matrix P is irreducible if for all x, y ∈ Ω, there exists an integer t ≥ 1

such that

Pt(x, y) > 0.

27



Another useful property of a Markov chain is aperiodicity, which is defined

here.

Definition 2. Let T (x) := {t ≥ 1 : Pt(x, x) > 0} be the set of times at which

it is possible for the chain to return to its initial state x. The period of the

state x is defined to be the greatest common divisor of T (x). If the period of

all states is 1, then (Xt)
∞
t=0 is aperiodic.

Lemma 1. (Levin et al., 2009) If (Xt)
∞
t=0 is an irreducible finite-state Markov

chain with state space Ω, then for all x, y ∈ Ω, gcd T (x) = gcd T (y).

Lemma 1 says that for an irreducible, finite-state Markov chain, all states have

the same period. Therefore, when the chain is irreducible, aperiodicity can be

established by showing that a particular state has period 1.

Definition 3. Let π be a probability distribution on Ω. For a finite-state Markov

chain (Xt)
∞
t=0 with state space Ω and transition matrix P, π is a stationary

distribution if

πP = π.

The properties of irreducibility and aperiodicity lead to the following result

pertaining to the stationary distribution of a finite-state Markov chain.

Lemma 2. (Karlin and Taylor, 1975) Suppose (Xt)
∞
t=0 is an irreducible and

aperiodic finite-state Markov chain with state space Ω and transition matrix

P. Then (Xt)
∞
t=0 has a unique stationary distribution π with the property that

for all x, y ∈ Ω,

lim
k→∞

Pk
xy = πy,
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where πy is the stationary probability of state y.

Note that limit in Lemma 2 is independent of the initial state x. This means

that as k gets large, the rows of Pk become more similar to the row vector

π. Furthermore, if P is symmetric, then the unique stationary distribution is

known.

Lemma 3. If (Xt)
∞
t=0 is an irreducible finite-state Markov chain with state

space Ω and symmetric transition matrix P, then the unique stationary distri-

bution for (Xt)
∞
t=0 is the discrete uniform distribution on Ω.

Proof. Since (Xt)
∞
t=0 is irreducible, the stationary distribution is unique by

Lemma 2. Recall that the stationary probability of a state y is given by

πy =
∑
x∈Ω

πxPxy

Suppose πx = 1
|Ω| for all x ∈ Ω. Then

πy =
1

|Ω|
∑
x∈Ω

πxPxy

=
1

|Ω|
∑
x∈Ω

Pyx

=
1

|Ω|
.

Therefore, the uniform distribution is stationary for (Xt)
∞
t=0.

Lemma 4. (Karlin and Taylor, 1975) For a finite-state Markov chain (Xt)
∞
t=0

with state space Ω and transition matrix P, suppose that for all x, y ∈ Ω,

(Xt)
∞
t=0 satisfies the detailed balance equations:

πxPxy = πyPyx for all x, y ∈ Ω (2.2)
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for some probability distribution π. Then π is a stationary distribution for

(Xt)
∞
t=0.

If (Xt)
∞
t=0 satisfies (2.2) and has π as the initial distribution (i.e. X0 ∼ π),

then the distribution of (X0,X1, . . . ,Xn) is the same as the distribution of

(Xn,Xn−1, . . . ,X0). A Markov chain with this property is called reversible,

and often, the simplest way to show that a chain is reversible is to verify that

it satisfies the detailed balance equations.

A common question pertaining to Markov chains is the question of how

long a chain takes to become close to its stationary distribution. The answer

to this question is based on a quantity known as the total variation distance,

which measures the distance of the chain from its stationary distribution after

n steps by comparing π to the n-step transition matrix Pn.

Definition 4. The total variation distance between the two probability distri-

butions µ and ν on Ω is defined by

‖µ− ν‖TV = max
A⊂Ω
|µ(A)− ν(A)|.

The following lemma provides an expression for the total variation distance

between two probability distributions that does not involve taking a maximum

over all 2|Ω| subsets of Ω.

Lemma 5. (Levin et al., 2009) Let µ and ν be two probability distributions on

Ω. Then

‖µ− ν‖TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)|. (2.3)

30



The time a chain takes to become close to its stationary distribution in

total variation distance is the mixing time, and it is defined as follows.

Definition 5. For fixed ε > 0 the mixing time of a finite-state Markov chain

with state space Ω and transition matrix P is defined by

τmix(ε) := min
{
k : ‖Pk − π‖TV≤ ε

}
.

For a Markov chain on a finite state space, a commonly chosen value of ε is

1/4 (Bayer and Diaconis, 1992; Levin et al., 2009), so that τmix = τmix(1/4).

The form of the total variation distance given in Lemma 5 is not efficiently

calculated in large state spaces. In some other cases, including one of the

chains we describe, the transition matrix is difficult to write down, making

calculation of the total variation distance difficult. In order to avoid this, we

use another measure of the convergence rate. This measure is known as the

relaxation time, and in certain situations, an upper bound on the relaxation

time can be used to obtain an upper bound on the mixing time.

Definition 6. For a reversible, irreducible, and aperiodic finite-state Markov

chain (Xt)
∞
t=0 with state space Ω and transition matrix P, let 1 = λ1 ≥ λ2 ≥

. . . ≥ λ|Ω| be the eigenvalues of P in decreasing order. The relaxation time of

(Xt)
∞
t=0 is defined to be

τrel(X) :=
1

1− λ2

.

The quantity 1− λ2 is the spectral gap of P.
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The rest of this section consists of proving a result that is useful in the

derivation of the upper bounds on the relaxation times of the chains we describe

in this chapter. Let Lx denote the set of leaves of a tree x ∈ Tn. Any two leaves

i, j ∈ Lx are connected by a unique path δij that does not intersect itself and

does not traverse any edge more than once. An example of a path of the type

defined above can be seen in Figure 2.1. The diameter of x, denoted diam(x),

Figure 2.1: A six-leaf rooted tree topology having diameter 5. One of the
paths that traverses five edges is the path from leaf A to leaf E, and this path
is highlighted in blue. Similar paths connecting leaves A and F , leaves B and
E, and leaves B and F also traverse five edges.

is the number of edges in the longest such path between any two leaves. Let

|δij| be the number of edges in the path δij. Then

diam(x) := max
(i,j)∈Lx×Lx

|δij|.

The following lemma states that a typical element of Tn has diameter of order

no larger than O(
√
n).
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Lemma 6. There exists a constant C1 < ∞, which does not depend on n,

such that if π denotes the discrete uniform probability measure on Tn, then the

median diameter with respect to π is no larger than C1

√
n.

Proof. Schweinsberg (2002) shows that if π∗ is the uniform distribution on the

space of n-leaf unrooted tree topologies, then there exists a constant C2 <∞

that does not depend on n such that the median diameter with respect to π∗

is no larger than C2

√
n. Since an n-leaf rooted tree topology can be viewed

as an n-leaf unrooted tree topology with a root inserted along a specific edge,

it follows that rooting an unrooted tree increases the diameter by no more

than one. Thus, the median diameter with respect to π is no larger than

(C2 + 1)
√
n.

2.2 The SPR Chain

In this section, we provide an upper bound on the relaxation time of (Xt)
∞
t=0,

the chain that explores Tn via SPR moves. In order to do so, we make use of the

distinguished paths method. This approach has been used in many settings (see

Jerrum and Sinclair (1989), Diaconis and Stroock (1991), and Schweinsberg

(2002) for examples). Let V be a subset of the leaf labels {1, 2, . . . , n} of

y ∈ Un. Now consider the tree that results from removing all leaves whose

labels are not in V from y. This tree is termed the V-tree derived from y. The

following lemma is proven in Schweinsberg (2002).
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Lemma 7. (Schweinsberg, 2002) If V is a k-element subset of {1, 2, . . . , n}

and y is a uniform random unrooted n-leaf tree, then the V -tree derived from

y is a uniform random unrooted k-leaf tree.

Since a rooted n-leaf tree topology can be viewed as an unrooted (n + 1)-

leaf tree topology with the (n + 1)st leaf extending from the root, it is clear

that Lemma 7 holds for rooted tree topologies.

Let PX be the transition matrix corresponding to (Xt)
∞
t=0. Obtaining PX

exactly is difficult, but it is possible to obtain useful lower bounds on the

transition probabilities. Recall that an SPR is a tree rearrangement in which a

randomly selected branch is broken, leaving two subtrees. One of the subtrees

is attached by the edge extending from its root to a randomly chosen branch

of the other subtree. Since the number of distinct SPRs that result in the

same tree is difficult to find, the exact transition probabilities for (Xt)
∞
t=0 are

hard to obtain. However, the following lemma provides information about the

transition probabilities for (Xt)
∞
t=0 that is useful in bounding the relaxation

time.

Lemma 8. For x,y ∈ Tn,

PX(x,y) =
2n− 2

(4n− 3)(n− 2)
if y = x

PX(x,y) ≥ 1

(4n− 3)(n− 2)
if y ∼ x

PX(x,y) = 0, otherwise.
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Proof. For topologies x,y ∈ Tn, consider three cases that may arise in the

completion of a rooted SPR.

(1) An external edge of x is removed.

(2) An internal edge of x that is not incident to the root is broken.

(3) An internal edge of x that is incident to the root is broken.

Case 1: There are n leaves from which to choose, and 2n− 3 edges to which

the pruned leaf can be reattached. One of the reattachments results in y = x,

so that there are n(2n − 4) SPRs under Case 1 that result in some topology

y ∼ x, where y ∼ x is taken to mean that y can be reached in one SPR from

x and that y 6= x. In addition, there are n SPRs under Case 1 that result in

no change to the labelled tree topology.

Case 2: Suppose an internal edge that is not incident to the root of x is broken.

Let the subtree that has been removed be denoted c1 and the remaining subtree

be called c2. Allowing ni, i = 1, 2 to denote the number of leaves in ci, there

are 2n2 − 1 edges of c2 along which c1 can be reattached. Similarly, c2 can be

regarded as the pruned subtree, and there are 2n1 − 1 edges of c1 to which c2

can be reattached. Of these, n1 are leaves and two edges are incident to the

root. In x there are n − 4 edges that are neither leaves nor are incident to

the root. Given an edge that has been broken, there are (2n1 − 1) + (2n2 − 1)

possible SPRs. Of these, one results in y = x. In total, (2n− 2)(n− 4) SPRs

are possible in Case 2. Therefore, (2n − 3)(n − 4) SPRs in this case result in

y ∼ x, while (n− 4) SPRs result in y = x.
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Case 3: When an edge that is incident to the root is broken, the reasoning

is similar to that used to establish the number of possible SPRs from Case

2. The only differences are that there are two edges that are incident to the

root, and regardless of which is broken, the same two subtrees c1 and c2 result.

Therefore, there are 2n− 2 possible SPRs from Case 3, two of which result in

y = x. The remaining (2n− 4) result in y ∼ x.

Summing the number of possible SPRs from x in each case gives a total of

(4n−3)(n−2) SPRs, of which 2n−2 result in a return to x and the remaining

SPRs yield a tree topology y ∼ x.

Define E = {e ≡ (x,y) : PX(x,y) > 0} to be the set of edges that con-

nect two tree topologies x,y ∈ Tn such that y ∼ x, and let G = (Tn,E) be

the underlying graph corresponding to PX. The vertices of this graph are the

elements of Tn, and the edges connect topologies for which PX(x,y) > 0. The

result of Lemma 8 implies that (Xt)
∞
t=0 is aperiodic, since there is a positive

probability at each transition that the state of the chain does not change.

Irreducibility comes from the construction of the SPR path. That construc-

tion implies that there is a positive probability of moving from any given tree

topology to any other given tree topology in no more than n − 1 steps. This

means that (Xt)
∞
t=0 is irreducible, so its stationary distribution is unique. In

addition, the fact that the SPR is a symmetric move implies that PX is sym-

metric. Therefore, the unique stationary distribution for (Xt)
∞
t=0 is the discrete

uniform distribution on Tn. Letting π denote the stationary distribution, we

have that for all t ∈ Tn, πt = 1/cn, where cn is the cardinality of Tn. The
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value of cn is given by

cn = (2n− 3)! ! =
n−1∏
i=1

(2i− 1).

Given an edge e ∈ E, we set Q(e) = Q(x,y) = πxPX(x,y), where x and

y are the vertices that are connected by e. The following lemma is central to

our derivation of an upper bound on τrel(X).

Lemma 9. (Schweinsberg, 2002) Let B ⊂ Tn. Suppose that for all x ∈ Tn and

y ∈ B, γxy is a path in G, possibly random, from x to y that has at most L

edges. Then

τrel(X) ≤ 4L

π(B)
max
e∈E

{
1

Q(e)

∑
x∈Tn

∑
y∈B

πxπyPr(e ∈ γxy)

}
. (2.4)

We are now ready to state the first of the two main results of this chapter.

Theorem 1. There exists a finite constant M1 such that τrel(X) ≤M1n
5
2 .

Proof. To establish Theorem 1, we take an approach that consists of analyzing

each of the factors appearing on the right hand side of (2.4) individually. To

begin, choose a subset B ⊂ Tn to be the set of all rooted n-leaf tree topologies

that have diameter no larger than O(
√
n). Let R = {r1, r2, . . . , rn} be a

uniform random permutation of the leaf labels of x. To obtain an upper bound

on the length of a path from x ∈ Tn to y ∈ B, we construct a random path

γxy = (x1,x2, . . . ,xm) such that x1 = x and xm = y. At step k of the path,

tree xk+1 is formed by removing a leaf from xk and reattaching it in such a

way that:
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(1) The {r1, . . . , rk+1}-tree derived from xk+1 is the same as the

{r1, . . . , rk+1}-tree derived from y;

(2) The {r1, rk+1, . . . , rn}-tree derived from xk+1 is the same as the

{r1, rk+1, . . . , rn}-tree derived from x.

Figure 2.2: An illustration of the first two steps of the SPR path from x
(leftmost tree) to y (rightmost tree). In the first step, the leaf labelled r2 has
been removed and re-attached to the branch immediately ancestral to the leaf
r1. In the second step, the leaf labelled r3 has been removed and re-attached to
the branch immediately ancestral to leaf r1. Leaves r4, . . . , r7 are subsequently
removed and reattached in a similar fashion to obtain x7 = y.

For some set A ⊂ R and tree x ∈ Tn, let x(A) be the A-tree derived from x.

The path begins with x1 = x. The first step of the path consists of removing

the leaf with label r2 and attaching it to the leaf labelled r1. The resulting tree

is denoted x2. The tree x2 contains a subtree s2, which we define to be the

rooted subtree that contains only the leaves r1 and r2 and the edge extending

from its root. Assume that for k ≥ 2, we have constructed a tree xk such that

it contains a subtree sk with the properties that

(i) the root of sk is the most recent common ancestor of {r1, r2, . . . , rk};
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(ii) xk({r1, r2, . . . , rk}) = y({r1, r2, . . . , rk});

(iii) sk includes an edge ascending from its root.

The tree xk+1 is obtained by removing the leaf rk+1 from xk and attaching it

to the unique edge of sk that produces xk+1 with the property that

xk+1({r1, r2, . . . , rk+1}) = y({r1, r2, . . . , rk+1}). At step n − 1, we complete

the path by removing leaf rn from xn−1 and attaching it to sn−1 in such a

manner that xn = sn = y. The first two steps of a typical path of this type

are illustrated in Figure 2.2.

This approach defines a path γxy from x to y. If an edge e ∈ E connects

xk to xk+1 in the path γxy, we say e ∈ γxy at the kth step. Since no leaf has

to be moved more than once in order to complete the path γxy, it follows that

|γxy| ≤ n− 1 for all x,y ∈ Tn. Lemma 6 gives a lower bound of 1/2 on π(B).

By Lemma 9,

τrel(X) ≤ 4(n− 1)

π(B)
max
e∈E

{
1

Q(e)

∑
x∈Tn

∑
y∈B

πxπyPr(e ∈ γxy)

}
.

If PX(x,y) > 0, then by Lemma 8, Q(e) ≥ 1/[(4n− 3)(n− 2)cn], which implies

that

τrel(X) ≤ 8(n− 1)cn(4n− 3)(n− 2) max
e∈E

∑
x∈Tn

∑
y∈B

πxπyPr(e ∈ γxy)

≤ 32n3cn max
e∈E

∑
x∈Tn

∑
y∈B

πxπyPr(e ∈ γxy).

Consider the set K(e) = {k : Pr(e ∈ γxy at step k) > 0 for some x ∈ Tn,y ∈

B}. Schweinsberg (2002) shows that in the case of unrooted trees, |K(e)|=
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O(n
1
2 ). For rooted trees, the argument is similar. Therefore,

τrel(X)

≤ 32n3cn max
e∈E

∑
x∈Tn

∑
y∈B

πxπy

 ∑
k∈K(e)

Pr(e ∈ γxy at step k)


≤ 32C3n

7
2 cn max

e∈E
max
k∈K(e)

∑
x∈Tn

∑
y∈Tn

πxπyPr(e ∈ γxy at step k) (2.5)

for some positive constant C3 < ∞. We derive a further upper bound on

(2.5) in the following way. Assume that x,y ∈ Tn are independent uniform

random n-leaf tree topologies and that {r1, r2, . . . , rn} is a uniform random

permutation of the leaf labels. We consider a fixed edge e ∈ E and a fixed

k ∈ K(e). Let v and w be the trees connected by edge e so that e is on the

path γxy at step k. In other words, let v and w be such that xk = v and

xk+1 = w. In this case, there are three independent events that must occur:

a) The subtree sk contains the leaves r1, r2, . . . , rk and the leaf being moved

is rk+1.

b) The {r1, r2, . . . , rk+1}-tree derived from y is the same as the

{r1, r2, . . . , rk+1}-tree derived from w.

c) The {r1, rk+1, rk+2, . . . , rn}-tree derived from x is the same as the

{r1, rk+1, rk+2, . . . , rn}-tree derived from v.

Event a) has probability 1/
(
n
k

)
× 1/(n − k) because r1, r2, . . . rn is a random

permutation of the leaf labels. Events b) and c) have probabilities 1/ck+1 and

1/cn−k+1, respectively, by applying Lemma 7. Thus, we have

Pr(e ∈ γxy at step k) ≤ 1(
n
k

)
(n− k)ck+1cn−k+1

. (2.6)
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As a result of (2.6),

∑
x∈Tn

∑
y∈Tn

πxπyPr(e ∈ γxy at step k) ≤ 1(
n
k

)
(n− k)ck+1cn−k+1

. (2.7)

Combining (2.5) and (2.7), we get

τrel(X) ≤ 32C3n
7
2

cn(
n
k

)
(n− k)(2(n− k)− 1)(2k − 1)ckcn−k

.

Stirling’s formula gives an approximate value of cn ≈ 2nnn−1e−n, where a ≈ b

is taken to mean that the ratio a/b is bounded away from 0 and∞ as n varies.

We also make use of the following well-known approximation to the binomial

coefficient: (
n

k

)
≈ nn+1/2

kk+1/2(n− k)(n−k)+1/2
. (2.8)

Applying Stirling’s approximation and (2.8), we see that there exists a positive

constant C4 <∞ such that

τrel(X) ≤ 32C3C4n
7
2

nn−1(
n
k

)
(n− k)(2(n− k)− 1))(2k − 1)kk−1(n− k)n−k−1

≈ 32C3C4n
7
2

nn−1kk+1/2(n− k)n−k+1/2

(2k − 1)(2(n− k)− 1)nn+1/2kk−1(n− k)n−k−1

= 32C3C4n
7
2

n−3/2k3/2(n− k)1/2

(2k − 1)(2(n− k)− 1)

≤ 32C3C4n
7
2n−3/2k1/2(n− k)−1/2

≤ 32C3C4n
7
2n−3/2n1/2

= O(n
5
2 ),

thus establishing the desired result.
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2.3 The NNI Chain

An argument similar to the one used to derive an upper bound on the relax-

ation time of the Markov chain (Xt)
∞
t=0, which explores Tn via SPR transitions,

can be used to derive an upper bound on the relaxation time of (Yt)
∞
t=0. In

order to apply Lemma 9 to obtain an upper bound on the relaxation time we

need the transition matrix of (Yt)
∞
t=0. In order to ensure that (Yt)

∞
t=0 is aperi-

odic, we specify a 1/2 probability at each transition that the chain remains in

its current state and that with probability 1/2 the chain moves to another tree

topology by way of an NNI that is chosen uniformly at random. The following

lemma gives the transition probabilities for (Yt)
∞
t=0.

Lemma 10. Let PY denote the transition matrix for (Yt). For two trees x

and y in Tn,

PY(x,y) =


1
2

if y = x
1

4(n−2)
if y ∼ x

0 otherwise,

where y ∼ x is taken to mean that y can be reached from x in one NNI and

x 6= y.

Proof. The 1/2 probability of remaining at the same tree comes from the con-

struction of (Yt)
∞
t=0. In any n-leaf rooted tree topology, there are a total of

n− 2 internal non-root nodes that may be chosen as the target. From each of

these, we may interchange the sibling and either of the two children to obtain

a different tree. Therefore, there are 2(n − 2) NNIs that result in a different

tree. Since (Yt)
∞
t=0 moves to a different tree with probability 1/2, and it does
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so by choosing an NNI uniformly at random from the 2(n− 2) possible NNIs,

it follows that PY(x,y) if y ∼ x.

The construction of the NNI path will demonstrate that in no more than

(n − 1)2 NNIs, it is possible to reach any tree from any other given tree.

Therefore, (Yt)
∞
t=0 is irreducible and has a unique stationary distribution. The

transition matrix is symmetric, so the discrete uniform distribution on Tn is

the stationary distribution for (Yt)
∞
t=0. We are now ready to derive an upper

bound on the relaxation time of (Yt)
∞
t=0.

Theorem 2. There exists a finite constant M2 <∞ such that τrel(Y) ≤M2n
4.

Proof. We construct a path from x ∈ Tn to y ∈ Tn, where each step of the path

is completed by performing an NNI on the tree that results from the previous

step. Recall that an NNI is a tree rearrangement that involves choosing an

internal, non-root node as the target. Two nodes, along with their descendant

subtrees, are chosen uniformly at random from among the sibling and the two

children of the target, and the chosen nodes and subtrees are interchanged.

The construction of the NNI path uses the SPR path described in the previous

section as a skeleton. The idea is to decompose each SPR into a sequence of

NNI steps, thus constructing an NNI path. We then make use of Lemma 9 to

develop an upper bound on the relaxation time of (Yt)
∞
t=0.

Consider an SPR that changes tree v ∈ Tn to tree w ∈ Tn by pruning and

regrafting a leaf l. We decompose this move into a sequence of NNI transitions
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in which leaf l is moved “up” one level at a time in the tree and/or moved

“down” the tree one level at a time until w is reached. Figure 2.3 shows how

any leaf can be moved up or down one level of the tree by performing a NNI.

This idea enables us to construct an NNI path ψxy between any two trees x

and y in Tn by constructing an SPR path γxy as before, and then breaking

each SPR transition into a series of NNI steps.

Formally, let x,y ∈ Tn and let γxy = (x1,x2, . . . ,xn) be the SPR path

Figure 2.3: (a) An NNI that results in leaf r5 being moved up one level of the
tree. In the starting tree, the target node is identified by a large black dot.
The sibling and the child r5 are interchanged, yielding the tree to the right.
(b) An NNI that results in leaf r5 being moved down one level of the tree. The
left child and sibling (r5) of the target are interchanged to yield the tree on
the right.

described in the previous subsection such that x = x1 and y = xn. The

corresponding NNI path can be written as

ψxy = (x
(1)
1 ,x

(2)
1 , . . . ,x

(n1−1)
1 ,x

(1)
2 , . . . ,x

(n2−1)
2 , . . . ,x

(1)
n−1, . . . ,x

(nn−1)
n−1 ,x(1)

n ),

where nk denotes the number of NNI moves required to change tree xk into

xk+1 and x1 = x
(1)
1 , x2 = x

(1)
2 , . . ., xn = x

(1)
n = y. An n-leaf rooted tree

topology has n − 1 internal nodes, so to reconstruct one of the SPRs from
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the path described in the previous section, a leaf must be moved in the way

described above a maximum of n−1 times. Since the number of SPRs required

to construct the SPR path described in the previous section is no larger than

n−1, the length of an NNI path is no greater than (n−1)2 steps. In addition,

observe that each intermediary tree has the property that it contains a subtree

sk satisfying i), ii), and iii) as in the construction of the SPR path.

Now let A denote the edge set of the underlying graph corresponding to the

transition matrix PY. Define the subpath ψ
(k)
xy = (x

(1)
k ,x

(2)
k , . . . ,x

(nk−1)
k ,x

(1)
k+1)

and note that this is a NNI path from xk to xk+1. Using Lemma 9, the

relaxation time for the NNI chain is bounded above by

τrel(Y) ≤ D1n
3cn max

a∈A

∑
x∈Tn

∑
y∈B

πxπyPr(a ∈ ψxy)

= ≤ D1n
3cn max

a∈A

∑
x∈Tn

∑
y∈B

πxπy

(∑
k

Pr(a ∈ ψ(k)
xy )

)
for some positive constant D1 < ∞. We claim that the rightmost sum above

contains no more than O(n1/2) non-zero terms (as in the SPR case). To see

this, note that the event “a ∈ ψ(k)
xy ” can only occur if edge a is on the NNI path

that produced edge e = (xk,xk+1) in the SPR path at step k. In other words,

the events “a ∈ ψ(k)
xy ” and “e ∈ γxy at step k” are equivalent. As previously

noted, there are at most O(n1/2) possible values for the integer k such that

Pr(e ∈ γxy at step k) > 0. Therefore, it follows that

τrel(Y) ≤ D1n
7/2cn max

a∈A
max
k

∑
x∈Tn

∑
y∈Tn

πxπyPr(a ∈ ψ(k)
xy ).

Also, observe that if a ∈ ψ(k)
xy , then a = (v,w) for some (v,w) ∈ Tn×Tn, and

the following three events must occur:
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a’) The subtree sk contains the leaves r1, r2, . . . , rk, and the leaf being moved

is rk+1;

b’) The {r1, r2, . . . , rk}-tree derived from y is the same as the {r1, r2, . . . , rk}-

tree derived from w;

c’) The {r1, rk+2, rk+3, . . . , rn}-tree derived from x is the same as the

{r1, rk+2, rk+3, . . . , rn}-tree derived from v.

Event a’) has probability 1/
(
n
k

)
× 1/(n − k), since a random permutation of

the leaves is used to form the SPR path. Conditionally on a’), events b’) and

c’) are independent and have probabilities 1/ck and 1/cn−k, respectively, by

Lemma 7. Therefore,

τrel(Y) ≤ D1n
7/2cn

∑
x∈Tn

∑
y∈Tn

πxπyPr(a ∈ ψ(k)
xy )

≤ 1(
n
k

)
(n− k)ckcn−k

≈ D1n
7/22nnn−1e−n

kk+1/2(n− k)n−k+1/2

nn+1/2(n− k)n−k2nkk−1e−n

= D1n
7/2k3/2(n− k)1/2n−3/2

≤ D1n
4. (2.9)

This establishes an upper bound of O(n4) on the relaxation time of (Yt)
∞
t=0.

2.3.1 Remarks

In the preceding two subsections, we established upper bounds on the re-

laxation times of two Markov chains on rooted phylogenetic trees. While the
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bounds established here are the best ones known to date, it is unlikely that they

are sharp. For example, Aldous (2012) recently conjectured that the relaxation

time for a chain similar to one of those discussed above is O(n3/2). Simulation

studies presented by Herbei and Kubatko (2013) show similar results. This is

an indication that it is important to continue investigating the mixing times

of these types of chains in hopes of designing more efficient MCMC algorithms

for Bayesian inference of phylogenetic trees given data at the leaves. We now

provide a lower bound on the relaxation time of each of the two chains.

2.4 Lower Bounds on the Relaxation Times of the SPR
and NNI Chains

In order to give lower bounds on the relaxation times of the SPR and NNI

chains, we must first provide information about the distribution of the number

of cherries on a randomly selected tree topology t ∈ Tn, where a cherry is a

pair of leaves that are adjacent to a common ancestral node (McKenzie and

Steel, 2000). We first give an upper bound on the net change in the number

of cherries under an SPR transition. We then derive the expected value and

the variance of the number of cherries on a randomly selected tree under the

stationary distribution.

2.4.1 Upper Bound on the Net Change in the Number
of Cherries Under an SPR

The following lemma gives an upper bound on the net change in the number

of cherries under an SPR transition.
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Lemma 11. Let f : Tn 7→
{

1, 2, . . . ,
⌊
n
2

⌋}
be a function that gives the number

of cherries on a For any pair (t1, t2) ∈ Tn × Tn such that PX(t1, t2) > 0,

|f(t1)− f(t2)|≤ 1.

Proof. Let p be the subtree that is pruned from t1, and let e denote the edge

to which p is reattached. Note that since t1 is a binary tree, it follows that if

p has more than one leaf, p must contain at least one cherry. Four cases exist

in performing an SPR to move from t1 to t2.

1. The subtree p consists of one leaf, the edge e is a leaf, and together, p

and e form a cherry.

2. The subtree p consists of one leaf, and that leaf is a part of a cherry.

The edge e is not a part of a cherry.

3. The subtree p is not a part of a cherry, but the edge e is a leaf that is a

part of a cherry.

4. Neither p nor e is a part of a cherry.

Case 1

In pruning the one-leaf subtree p, the cherry from which p descends is

destroyed. This results in either the formation of a new cherry at a node

ancestral to the parent node of p, or in the destruction of this cherry without

the formation of a new one. Regardless of which is the case, attaching p to e
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results in simultaneously destroying the cherry ancestral to e and creating a

new cherry. Thus, if a new cherry is formed in the pruning of p, f(t2) = f(t1).

If the pruning of p does not result in the creation of a new cherry, then the

move results in a net loss of one cherry, so that f(t2) = f(t1)− 1.

Case 2

The pruning of p results in either the simultaneous creation and destruction

of a cherry or the destruction of a cherry without the formation of a new one.

Suppose that pruning p results in the simultaneous destruction of a cherry and

the formation of a new one. If e is a leaf, then the attachment of p to e results

in the creation of a new cherry, and f(t2) = f(t1) + 1. If e is not a leaf, then

attaching p to e neither creates nor destroys a cherry, so that f(t2) = f(t1).

Now suppose that pruning p destroys a cherry without creating a new one.

Then if e is a leaf, f(t2) = f(t1). Otherwise, f(t2) = f(t1)− 1.

Case 3

If pruning p results in the creation of a cherry, then it is not possible for p

to be a one-leaf subtree. Assume for now that pruning p results in the creation

of a cherry. Then attaching p to e results in the destruction of a cherry, so that

f(t2) = f(t1). Now assume that pruning p creates no cherries. Then since p

is not a part of a cherry, pruning it does not destroy any cherries. If p is a

one-leaf subtree, then attaching it to e results in a net gain of zero cherries,

so that f(t2) = f(t1). If p is not a one-leaf subtree, then attaching it to e

destroys a cherry, and f(t2) = f(t1)− 1.
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Case 4

If p is a one-leaf subtree and e is a leaf, then pruning p neither creates nor

destroys a cherry. However, attachment of p to e creates a cherry. Therefore,

f(t2) = f(t1) + 1. If p is not a one-leaf subtree and e is a leaf, then it is

possible to create a cherry by pruning p, but it is not possible to destroy

one. The reattachment neither creates nor destroys any cherries, so that either

f(t2) = f(t1) or f(t2) = f(t1) + 1. If p is a one-leaf subtree and e is not a

leaf, then pruning p can neither create nor destroy a cherry. Since e is not a

leaf, attaching p to e cannot create a cherry. Since e is not a descendant of

a cherry, the reattachment cannot destroy one. Therefore, f(t2) = f(t1). If

p is not a one-leaf subtree and e is not a leaf, the pruning of p can create a

cherry, but it cannot destroy one. The attachment of p to e neither creates nor

destroys a cherry. This yields that either f(t2) = f(t1) or f(t2) = f(t1) + 1.

This establishes Lemma 11.

Since the NNI move is a special case of the SPR, it follows that Lemma 11

holds for the NNI transition as well.

2.4.2 Distribution of the Number of Cherries

Hendy and Penny (1982) provide a result that is useful in deriving the

expectation and the variance of the number of cherries for unrooted trees under

the stationary distribution π∗, where π∗ is the discrete uniform distribution on

Un, the space of n-leaf unrooted tree topologies. Let N∗n,r denote the number

50



of n-leaf unrooted tree topologies with r cherries. Then for n ≥ 4,

N∗n,r =
n! (n− 4)!

(n− 2r)! r! (r − 2)! 22(r−1)
, 2 ≤ r ≤

⌊n
2

⌋
.

We modify this result to derive the stationary variance of the number of cherries

for rooted trees. Let Nn,r represent the number of rooted tree topologies with

n taxa and r cherries. Let Cn be a random variable that corresponds to the

number of cherries on a randomly selected topology in Tn. The support of Cn

is
{

1, 2, . . . ,
⌊
n
2

⌋}
, where bxc denotes the greatest integer that is no larger than

x. Let Eπ[·] denote expected value with respect to the measure π, where π is

the discrete uniform measure on Tn, and let Eπ∗ [·] be the expected value with

respect to π∗. Let Vπ[·] and Vπ∗ [·] represent variances with respect to π and

π∗, respectively. Let C∗n be a random variable that corresponds to the number

of cherries on a randomly selected unrooted tree topology. The support of C∗n

is the same as that of Cn. We are now ready to present the following result.

Lemma 12. For n ≥ 6,

Nn,r =



n!
2
, if r = 1

n!(n−4)![2(n−r)−3]

(n−2r)!r!(r−2)!22(r−1) +

n!(n−4)!2(r+1)
(n−2(r+1))!(r+1)!(r−1)!22r

, if 2 ≤ r ≤
⌊
n
2

⌋
− 1

n!(n−4)![2(n−r)−3]

(n−2r)!r!(r−2)!22(r−1) , if r =
⌊
n
2

⌋
.

(2.10)

For n = 4 or 5,

Nn,r =


n!
2

if r = 1

n!(2n−7)
8

if r = 2.

(2.11)
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For n = 2 or 3, Nn,1 = (2n − 3)! !. Under the stationary distribution, for

r = 1, 2, . . . ,
⌊
n
2

⌋
,

Pr(Cn = r) =
Nn,r

(2n− 3)! !
. (2.12)

Proof. For an unrooted tree topology, there are 2n−3 edges, and hence, 2n−3

places to insert a root. When we insert a root, we either insert it along one

of the descendant branches of a cherry, or we insert the root along a branch

that is not a part of a cherry. There are 2r ways to put a root on a branch of

a cherry, each of which results in a different rooted tree topology. This leaves

2(n− r)− 3 ways to place a root elsewhere. Each placement of a root results

in a distinct tree topology.

Placing a root on a branch of a cherry destroys the cherry, while placing

a root elsewhere neither creates nor destroys a cherry. Therefore, rooting the

tree either decreases the number of cherries by one, or it leaves the number of

cherries unchanged. To obtain a rooted n-leaf tree topology with one cherry,

we must root an unrooted tree topology with two cherries along a branch of a

cherry. Therefore,

Nn,1 = N∗n,22(2) = 4N∗n,2 =
n!

2
.

There are two ways to obtain a rooted topology with n taxa and r cherries from

an unrooted topology with n taxa, 2 ≤ r ≤ bn/2c − 1. One way is to insert

a root along a branch that is not part of a cherry on an unrooted topology

with r cherries. The other is to insert a root along a branch that is part of a

cherry on an unrooted tree topology with r+1 cherries. There are 2(n−r)−3

ways to perform the first, with each resulting in a different topology. There
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are 2(r+1) ways to perform the second, and each of these results in a different

topology. Therefore,

Nn,r =
n! (n− 4)! [2(n− r)− 3]

(n− 2r)! r! (r − 2)! 22r−2
+

n! (n− 4)! 2(r + 1)

[n− 2(r + 1)] ! (r + 1)! (r − 1)! 22r
,

where 2 ≤ r ≤ bn/2c − 1. When r = bn/2c, there is only one way to get

a rooted topology with r cherries from an unrooted topology with r cherries.

We must insert a root along a branch that is not part of a cherry. There are

2(n− r)−3 ways to do this, each resulting in a different topology. As a result,

Nn,r = [2(n− r)− 3]N∗n,r

=
n! (n− 4)! [2(n− r)− 3]

(n− 2r)! r! (r − 2)! 22(r−1)
,

where r = bn/2c.

When n = 4 or n = 5, r must be either 1 or 2. Thus, we apply the same

arguments we used for the case where n ≥ 6 and r = 1 and r = bn/2c to

obtain

Nn,r =

{
n!
2
, r = 1

n!(2n−7)
8

, r = 2.

When n = 2 or n = 3, r must be 1. Thus, we apply the argument for the case

where n ≥ 6 and r = 1 to obtain

Nn,1 =
n!

2
.

Since the stationary distribution for the chain we describe is the uniform dis-

tribution over Tn, for n ≥ 6, (2.12) follows immediately. Similarly, for n = 4 or

n = 5, we obtain (2.11). In addition, it is clear that a 2-taxon or 3-taxon tree

must have exactly one cherry, so that Pr(Cn = 1) = 1 for n = 2 or n = 3.
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In order to obtain the stationary variance of the number of cherries, we

must first find the expected number of cherries on a randomly selected rooted

tree topology with respect to the stationary distribution.

Lemma 13. For n ≥ 2, Eπ [Cn] = n(n−1)
2(2n−3)

.

Proof. McKenzie and Steel (2000) showed that

Eπ∗ [C∗n] =
n(n− 1)

2(2n− 5)
.

We see that the expected number of cherries on a rooted topology is given by

Eπ [Cn]

=
1

(2n− 3)! !

n!

2
+

bn2 c∑
r=2

r
n! (n− 4)! [2(n− r)− 3]

(n− 2r)! r! (r − 2)! 22r−2


+

1

(2n− 3)! !

bn2 c−1∑
r=2

r
n! (n− 4)! 2(r + 1)

(n− 2(r + 1))! (r + 1)! (r − 1)! 22r

=
n!

(2n− 3)! !
+

1

2n− 3

[
(2n− 3)Eπ∗ [C∗n]− 2Eπ∗

[
(C∗n)2]]

+
2

(2n− 3)! !

bn2 c∑
r=3

(r − 1)
n! (n− 4)! r

(n− 2r)! r! (r − 2)! 22r−2
. (2.13)

The term involving the summation in (2.13) can also be written in terms of

expectations with respect to π∗ as

2

2n− 3

[
Eπ∗

[
(C∗n)2]− Eπ∗ [C∗n]

]
− n!

2(2n− 3)! !
. (2.14)

54



Adding to (2.14) the part of (2.13) that is written in terms of expectations

with respect to π∗, we get

Eπ [Cn] =
2n− 5

2n− 3
Eπ∗ [C∗n]

=
(2n− 5)n(n− 1)

2(2n− 3)(2n− 5)

=
n(n− 1)

2(2n− 3)
.

If n = 4,

Eπ [Cn] =
4!

2(2n− 3)! !
+ 2

n! (2n− 7)

2(2n− 3)! !
=

4(3)

2(5)
.

If n = 5,

Eπ [Cn] =
5!

2(2n− 3)! !
+ 2

n! (2n− 7)

2! 22(2n− 3)! !
=

5(4)

2(7)
,

so that in both cases, Eπ [Cn] = n(n−1)
2(2n−3)

.

If n = 2 or n = 3, Eπ [Cn] = 1, which is equal to n(n−1)
2(2n−3)

in either case.

Therefore, for n ≥ 2,

Eπ [Cn] =
n(n− 1)

2(2n− 3)
.

Now that we have the distribution and the expectation of Cn, we can find

the variance. In order to do so, we need to find Eπ
[
(Cn)2]. Using a similar

approach to that which was employed to find Eπ [Cn], we find that for n ≥ 6,

Eπ
[
(Cn)2] =

2n− 7

2n− 3

[
Vπ∗ [C∗n] + (Eπ∗ [C∗n])2]

+
2

2n− 3
Eπ∗ [C∗n] .

McKenzie and Steel (2000) showed that

Vπ∗ [C∗n] =
n(n− 1)(n− 4)(n− 5)

2(2n− 5)2(2n− 7)
. (2.15)
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Therefore, for n ≥ 6,

Eπ
[
(Cn)2] =

2n− 7

2n− 3

[
n(n− 1)(n− 4)(n− 5)

2(2n− 5)2(2n− 7)
+
n2(n− 1)2

4(2n− 5)2

]
+

n(n− 1)

(2n− 3)(2n− 5)
,

which implies

Vπ [Cn] =
2n− 7

2n− 3

[
n(n− 1)(n− 4)(n− 5)

2(2n− 5)2(2n− 7)
+
n2(n− 1)2

4(2n− 5)2

]
+

n(n− 1)

(2n− 3)(2n− 5)
− n2(n− 1)2

4(2n− 3)2
. (2.16)

If n = 4 or n = 5,

Eπ
[
(Cn)2] =

2∑
r=1

Pr(Cn = r)r2

=
n!

2(2n− 3)! !
+

4n! (2n− 7)

8(2n− 3)! !

=
(2n− 6)n!

2(2n− 3)! !
.

Therefore,

Vπ[Cn] =
(2n− 6)n!

2(2n− 3)! !
− n2(n− 1)2

4(2n− 3)2
.

If n = 2 or n = 3, Vπ[Cn] = 0 since Cn = 1 with probability 1. It is straightfor-

ward to show that the value on the right hand side of (2.16) is approximately

n/16. We are now ready to give a lower bound on the relaxation time of both

chains.

2.4.3 Lower Bound on the Relaxation Time

In order to derive our lower bounds on the relaxation time of the SPR and

NNI chains, we need the following theorem.
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Theorem 3. (Diaconis and Stroock, 1991) Suppose t1 and t2 are two tree

topologies in Tn. Then for a Markov chain (Zt)
∞
t=0 having state space Tn,

τrel(Z) := sup
f :Tn 7→R

2Varπf∑
t1

∑
t2
πt1PZ(t1, t2)(f(t1)− f(t2))2

, (2.17)

where Varπf is the variance of the function f with respect to the stationary

distribution π, and PZ is the transition matrix for (Zt)
∞
t=0.

In order to use Theorem 3 to establish a lower bound on the relaxation

times of the two chains we described in Section 2.2, it is necessary to select

a function f : Tn 7→ R for which we can bound the variance with respect to

the stationary distribution. The work in the previous section shows that the

number of cherries meets this requirement, so we let f(t) be the number of

cherries on a rooted tree topology in Tn.

Recall the result of Lemma 11. This, combined with the following, implies

that the denominator of (2.17) is bounded above by 1:∑
t1∈Tn

∑
t2∈Tn

πt1PX(t1, t2)

=
∑
t1∈Tn

∑
t2∈Tn

πt1Pr(t2|t1)

= 1.

This establishes that τrel(X) ≥ O(n) for n ≥ 6. For n = 4 or n = 5, we can

substitute the exact values of the variance of Cn in each case and use that

to obtain a lower bound on the relaxation time. When n < 4, this method

of obtaining a lower bound on the relaxation time is not very helpful, since

Vπ[Cn] = 0.

For the NNI chain (Yt)
∞
t=0, the moves that we use to construct the NNI
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path are special cases of those used to construct the SPR path. In addition,

the stationary distributions for the two chains are the same, thus implying

that τrel(Y) ≥ O(n).

2.4.4 Bounds on the Mixing Times of the SPR and NNI
Chains

The following result relates the upper and lower bounds on the relaxation

times of (Xt)
∞
t=0 and (Yt)

∞
t=0 to the mixing times of each chain. Let τmix(X) and

τmix(Y) denote the mixing times of (Xt)
∞
t=0 and (Yt)

∞
t=0, respectively. Let ε be

the total variation threshold for mixing.

Theorem 4. (Levin et al., 2009) Let PZ be the transition matrix of a re-

versible, irreducible Markov chain (Zt)
∞
t=0 with state space Tn, and let πmin :=

minx∈Tn πx, where π is the stationary measure for (Zt)
∞
t=0. Then

(τrel(Z)− 1) log

(
1

2ε

)
≤ τmix(Z) ≤ log

(
1

επmin

)
τrel.

Recall that O(n) ≤ τrel(X) ≤ O(n
5
2 ). As a result, we have the following

lower bound on the mixing time. For some finite positive constant M ,

τmix(X) ≥ (τrel(X)− 1) log

(
1

2ε

)
≥ (Mn− 1) log

(
1

2ε

)
≥ O(n).
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In addition, for some positive finite constant N , we obtain the following upper

bound on τmix(X).

τmix(X) ≤ log

(
1

επmin

)
≤ log

(cn
ε

)
Nn5/2

=

[(
n−1∑
i=1

log(2i− 1)

)
− log(ε)

]
Nn5/2

≤ O(n7/2 log(n)).

Thus, we have established that O(n) ≤ τmix(X) ≤ O(n7/2 log(n)). Similar

reasoning can be used to find that O(n) ≤ τmix(Y) ≤ O(n5 log(n)). It is

important to recall that the upper bound on the relaxation time, and thus on

the mixing time, of (Xt)
∞
t=0 is likely not sharp. However, Randall and Tetali

(2000) showed that the mixing time of a chain on rooted tree topologies whose

transitions consist of tree rearrangements that are similar to NNIs is exactly

O(n5 log(n)). This matches the upper bound on the mixing time that we

obtained by finding an upper bound on the relaxation time.
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Chapter 3: Geometric Ergodicity of a Markov Chain

Monte Carlo Method for Inference of Phylogenetic

Branch Lengths

The goal of this chapter is to describe an MCMC algorithm for inferring

the branch lengths of a phylogenetic tree when the tree topology is known and

there are DNA sequence data at the leaves. During the first several iterations

of the algorithm, the chain explores the state space until it is approximately

stationary. Subsequent states can be regarded as an approximate sample from

the target density. In a Bayesian setting, the target density is a posterior den-

sity, and the ability to sample from the approximate posterior density allows

Bayesian inference.

The chapter opens with a description of a general method of verifying geo-

metric ergodicity of a Markov chain. This is followed by an introduction to a

specific MCMC algorithm, known as the random scan Metropolis (RSM) algo-

rithm, that we employ in the rest of this dissertation. In the literature, one can

find several methods of establishing geometric ergodicity for the RSM sampler.

We mention some of these methods briefly and then provide a description of the

method that is most similar to the sampler we use to approximate the posterior
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distribution of the branch lengths given the tree topology and a DNA sequence

data set. The chapter concludes with a presentation of a version of the RSM

sampler for approximating the posterior density of the branch lengths, as well

as a verification of its geometric ergodicity.

3.1 Preliminaries

The work in this chapter verifies that the Markov chain we use to ap-

proximate the posterior distribution of the branch lengths converges to its

stationary distribution at a geometric rate. Later, we take a step toward pro-

viding an honest (Jones and Hobert, 2001) upper bound on the mixing time

of our sampler, meaning that the upper bound is obtained prior to running

the chain and thus, not determined by the output of the sampler. In order

to explain how such bounds are obtained, we must first provide some back-

ground on continuous-state Markov chains. These concepts are required in

order to develop an understanding of the work we provide in the rest of this

dissertation.

Definition 7. A transition kernel is a function K : Rm×B(Rm) 7→ [0, 1], where

m ≥ 1 is an integer and B(Rm) is the σ-field of Borel subsets of Rm, such that

1. For all x ∈ Rm, K(x, ·) is a probability measure, and

2. For all A ∈ B(Rm), K(·, A) is measurable.

Definition 8. A sequence (Xt)
∞
t=0 of random variables is a Markov chain, defined

by a transition kernel K(·, ·), if for any t, the conditional distribution of Xt
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given Xt−1, . . ., X0 is the same as the distribution of Xt given Xt−1; i.e.

Pr(Xt ∈ A|X0, . . . ,Xt−1) = Pr(Xt ∈ A|Xt−1)

=

∫
A

K(Xt−1, dXt),

where A ∈ B(Rm).

Definition 9. If π is a σ-finite probability measure, then π is a stationary

measure for the transition kernel K(·, ·), and for the associated chain (Xt)
∞
t=0

if

π(A) =

∫
Rm

K(x, A)π(dx), for all A ∈ B(Rm).

The definitions of the transition kernel and a stationary distribution enable

us to define reversibility, which is a desirable property of an MCMC algorithm.

Definition 10. A stationary Markov chain (Xt)
∞
t=0 is reversible if the conditional

distribution of Xt+1 given Xt+2 = x is the same as the distribution of Xt+1 given

Xt = x for all t ≥ 0. A sufficient condition for reversibility is satisfaction of

the detailed balance condition:

k(x|y)π(y) = k(y|x)π(x),

for every (x,y) ∈ Rm ×Rm where k(·|x) is the density of K(x, ·) with respect

to Lebesgue measure.

Definition 11. Let (Ω,F , µ) and (Ω,F , ν) be two probability spaces. The total

variation distance between µ and ν is given by

‖µ(·)− ν(·)‖TV := sup
A∈F
|µ(A)− ν(A)|

62



Let Kk(·, ·) denote the k-step transition kernel for (Xt)
∞
t=0, so that

Kk(x, A) = Pr(Xt+k ∈ A|Xt = x).

where k and t are non-negative integers.

Definition 12. The mixing time τmix of (Xt)
∞
t=0 is given by

τmix := min

{
k : max

x∈Rm
‖Kk(x, ·)− π(·)‖TV≤ ε

}
for ε < 1 chosen by the researcher.

A commonly used method of obtaining an upper bound on the mixing

time of a continuous-state Markov chain (Xt)
∞
t=0 is the coupling method, which

involves the construction of a Markov chain (Yt)
∞
t=0 that is a copy of (Xt)

∞
t=0

such that X0 6= Y0. One can then bound the mixing time by bounding the

time required for (Xt)
∞
t=0 and (Yt)

∞
t=0 to become the same chain (i.e (Xt)

∞
t=0 and

(Yt)
∞
t=0 couple). The method assumes that (Xt)

∞
t=0 and (Yt)

∞
t=0 are two Markov

chains on Rm such that there exists a time τC , called the coupling time, which

is defined in the following way:

Definition 13. Suppose that for (Xt)
∞
t=0 and (Yt)

∞
t=0, there exists a set S such

that for each s ∈ S, for all r ≥ s, Xr = Yr. Then the coupling time is defined

as

τC := inf{s : s ∈ S}.

A bound on the mixing time is found through the coupling inequality :

‖Kk(y, ·)− π(·)‖TV≤ Pr(τC > k).
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One can find many examples of the use of the coupling method in the liter-

ature. Propp and Wilson (1996) provide a description of a technique referred

to as coupling from the past, which allows perfect sampling from continuous

distributions. Pinto and Neal (2001) present a procedure in which a chain is

coupled with an approximation to an exact copy of the original chain. For a

brief survey of the uses and variations of the coupling method, see the work

of Breyer and Roberts (2000). Coupling is not the only useful approach for

bounding the mixing time of a Markov chain. For a more comprehensive treat-

ment of this topic, one may consult Meyn and Tweedie (2009).

In many cases, we desire an MCMC algorithm that converges to its station-

ary distribution at at least a geometric rate. We say that (Xt)
∞
t=0 is geometri-

cally ergodic if there exist a positive finite constant R(x), which may depend

on the inital state of the chain, and a constant r < 1 such that for all n ≥ 1,

‖Kn(x, ·)− π(·)‖TV≤ R(x)rn.

Geometric ergodicity does not ensure rapid convergence of an MCMC al-

gorithm. However, geometric ergodicity guarantees that, under certain con-

ditions, we have a Central Limit Theorem for ergodic averages. In order to

discuss this, we need to define several properties that are desirable for a well-

behaved Markov chain.

Definition 14. Given a probability measure φ, the Markov chain (Xt)
∞
t=0 with

transition kernel K(·, ·) is φ-irreducible if for every A ∈ B(Rm) with φ(A) > 0,

there exists n such that Kn(x, A) > 0 for all x ∈ Rm.
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Irreducibility ensures that every set A ∈ B(Rm) will be visited by the

chain, but it does not guarantee that the chain will enter A frequently enough

to ensure convergence at a geometric rate. To guarantee this, we need the

property of recurrence.

Definition 15. A Markov chain (Xt)
∞
t=0 is recurrent if

1. there exists a probability measure φ such that (Xt)
∞
t=0 is φ-irreducible,

and

2. for every A ∈ B(Rm) such that φ(A) > 0, Ex [ηA] =∞ for every x ∈ A,

where ηA denotes the number of times the chain returns to the set A, so that

ηA =
∞∑
t=1

IA(Xt)

and

IA(Xt) =

{
1 if Xt ∈ A
0 otherwise

.

In order to take advantage of Central Limit theorems for ergodic averages, we

need a property that is stronger than recurrence.

Definition 16. A set A ∈ B(Rm) is Harris recurrent if Prx(ηA = ∞) = 1 for

all x ∈ A. The chain (Xt)
∞
t=0 is Harris recurrent if there exists a measure φ

such that (Xt)
∞
t=0 is φ- irreducible, and for every set A such that φ(A) > 0, A

is Harris recurrent.

Definition 17. A set C ⊂ Rm is a small set if there exist an integer n > 0 and

a probability measure ν such that for all x ∈ C and for all A ∈ B(Rm),

Kn(x, A) ≥ ν(A).
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Definition 18. A φ-irreducible Markov chain (Xt)
∞
t=0 has a cycle of length d if

there exists a small set C, an associated integer M , and a probability distri-

bution νM such that d is the gcd of

D(C) := {m ≥ 1 : There exists δm > 0 such that C is small for νm ≥ δmνM} .

The number d is termed the period of the chain, and (Xt)
∞
t=0 is aperiodic

if d = 1. This definition says that for each m ∈ D(C), the set C satisfies the

requirements of a small set for some probability measure νm, so that if the

chain starts in C, then it has a positive probability of returning to C in m

steps.

3.1.1 The Metropolis Hastings Algorithm

The literature contains descriptions of a wide variety of MCMC algorithms.

We describe two of the most common MCMC algorithms here. The Metropolis

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is a general way

of obtaining an approximate sample from π. Suppose Xt is the current state

of a Markov chain (Xt)
∞
t=0. We obtain Xt+1 as follows:

1. Draw X∗ from a proposal distribution q(·|Xt).

2. Calculate the acceptance ratio

α(Xt,X
∗) =

π(X∗)q(Xt|X∗)
π(Xt)q(X∗|Xt)

.
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3. Set Xt+1 = X∗ with probability min {α(Xt,X
∗), 1}, and Xt with probabil-

ity 1-min {α(Xt,X
∗), 1}.

Provided that the chain generated by the Metropolis Hastings algorithm is

irreducible and aperiodic, it has a unique stationary distribution π.

3.1.2 Gibbs Sampler

The Gibbs sampler (Gelfand and Smith, 1990) is a special case of the

Metropolis Hastings algorithm that produces a Markov chain with target den-

sity π when samples from the set of full conditional densities are available.

The sampling algorithm proceeds through a one-at-a-time updating scheme in

the following way:

1. Choose a starting value X0 ∈ Rm, m ≥ 1.

2. Draw Xt+1 with dimension m from the full conditional densities

X
(1)
t+1 ∼ π(·|X(2)

t , . . . ,X
(m)
t )

X
(2)
t+1 ∼ π(·|X(1)

t+1,X
(3)
t , . . . ,X

(m)
t )

...

X
(m−1)
t+1 ∼ π(·|X(1)

t+1, . . . ,X
(m−2)
t+1 ,X

(m)
t )

X
(m)
t+1 ∼ π(·|X(1)

t+1, . . . ,X
(m−1)
t+1 ).

In this chapter and the next, we provide convergence results for a particular

hybrid sampler. This algorithm was extensively studied in Fort et al. (2003),

and we use it to approximate the posterior density of a set of branch lengths

given a data set and a tree topology.
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3.2 A General Method of Establishing Geometric Er-
godicity

Let (Ω,F ,P) be a probability space, and let (Xt)
∞
t=0 be a Markov chain

on Rm,m ≥ 1, that has transition kernel K(·, ·). A sufficient condition for

geometric ergodicity of (Xt)
∞
t=0 is that it satisfies a minorization condition and

an associated drift condition. We define these two conditions here.

Definition 19. A Markov chain (Xt)
∞
t=0 satisfies a minorization condition if

there exist ε > 0, a small set C ⊂ Rm, and a probability measure ν such that

for all x ∈ C,

K(x, A) ≥ εν(A) ∀A ∈ B(Rm).

Definition 20. A Markov chain (Xt)
∞
t=0 satisfies a drift condition if there exist

a function V : Rm 7→ [1,∞), constants λ ∈ (0, 1) and b < ∞, and a small set

C ⊂ Rm such that for all x ∈ Rm,

E [V (Xt+1)|Xt = x] ≤ λV (x) + bIC(x).

Equivalently, (Xt)
∞
t=0 satisfies a drift condition if there exist a function V :

Rm 7→ [0,∞) and constants λ ∈ (0, 1) and b <∞ such that for all x ∈ Rm,

E [V (Xt+1)|Xt = x] ≤ λV (x) + b.

Two natural questions arise here. The first is the question of what is meant

by an “associated” drift condition. The second question is how satisfaction of
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a minorization condition and an associated drift condition implies geometric

ergodicity. We resolve the second question, and in the process, we provide an

answer to the first.

3.2.1 Role of the Minorization Condition

Suppose K(·, ·) admits a transition density k(·|·) with respect to the m-

dimensional Lebesgue measure λm, and suppose that (Xt)
∞
t=0 satisfies a mi-

norization condition on a small set C ⊂ Rm, with minorizing constant ε < 1

and minorizing density q(·) so that for any x ∈ C,

k(y|x) ≥ εq(y) for all y ∈ Rm.

Let r(·|·) be a probability density with respect to λm, termed the residual

density, on Rm. The residual density is given by

r(y|x) =
k(y|x)− εq(y)

1− ε

for each fixed x ∈ C. This representation of the residual density allows the

transition density to be written as a mixture of the residual and minorizing

densities so that for any x ∈ C,

k(y|x) = εq(y) + (1− ε) r(y|x).

This representation of the transition density corresponds to the following

description of (Xt)
∞
t=0. If Xt ∈ C, generate Xt+1 as follows. Generate a 0 − 1

coin flip from a Bernoulli(ε) distribution. If the outcome is 1, generate Xt+1

from q(·). Otherwise, generate Xt+1 from r(·|Xt).
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Now construct a second Markov chain (Yt)
∞
t=0. This chain is a copy of

(Xt)
∞
t=0, and it is constructed in such a way that (Xt)

∞
t=0 and (Yt)

∞
t=0 eventually

become the same chain (i.e. (Xt)
∞
t=0 and (Yt)

∞
t=0 couple). Let X0 be an arbitrary

initial value of (Xt)
∞
t=0 and draw Y0 from the stationary distribution π. Given

(Xt,Yt), the simulation of (Xt+1,Yt+1) occurs in one of two ways, the choice of

which depends on whether (Xt,Yt) ∈ C × C.

If (Xt,Yt) is not in C×C, draw Xt+1 according to r(·|Xt), and independently

draw Yt+1 according to r(·|Yt). Otherwise, generate a 0− 1 coin flip according

to a Bernoulli(ε) distribution. If the outcome is 0, draw Xt+1 according to

r(·|Xt) and independently draw Yt+1 according to r(·|Yt). If the outcome is 1,

generate Xt+1 = Yt+1 according to q(·). The first value of t for which Xt = Yt

is the coupling time, denoted τC . For all t ≥ τC , draw (Xt,Yt) so that Xt = Yt.

Recall that for a Markov chain (Xt)
∞
t=0 with transition kernel K and sta-

tionary distribution π,

‖Kk(x, ·)− π(·)‖TV≤ Pr(τC > k).

Let r1 = inf {m : (Xm,Ym) ∈ C × C} represent the first time (Xt,Yt)
∞
t=0 returns

to C × C, and for i = 2, 3, . . . , let ri = inf {m > ri−1 : (Xm,Ym) ∈ C × C}.

The ri are known as the return times to C ×C. Let Nk = max {i : ri < k} be

the number of times (Xt,Yt)
∞
t=0 returns to C × C prior to time k. Whenever

(Xt,Yt)
∞
t=0 ∈ C × C, the probability that the chains couple is ε. To bound
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Pr(τC > k), note that

Pr(τC > k) = Pr(τC > k and Nk ≥ j) + Pr(τC > k and Nk < j)

≤ Pr(τC > k and Nk ≥ j) + Pr(Nk < j), (3.1)

where j ∈ Z+.

The first term on the right-hand side of (3.1) gives the probability that the

pair of chains has entered C ×C at least j times prior to time k, and at none

of these times have the two chains coupled. This quantity is bounded above

by (1− ε)j. Therefore,

‖Kk(x, ·)− π(·)‖TV≤ (1− ε)j + Pr(Nk < j).

In some cases, it is not required that we go any further than this to obtain an

upper bound on the total variation distance between Kk and π. The following

theorem (Meyn and Tweedie, 2009) gives a scenario in which an upper bound

on the total variation distance can be obtained by verifying only a minorization

condition.

Theorem 5. (Meyn and Tweedie, 2009) Suppose a Markov chain (Xt)
∞
t=0 with

state space Rm has a stationary distribution π and is π-irreducible, aperiodic,

and Harris recurrent. If (Xt)
∞
t=0 satisfies a minorization condition with small

set C = Rm, then

‖Kk(X0, ·)− π(·)‖TV≤ (1− ε)k.

If the entire state space is small, then clearly (Xt,Yt) ∈ C×C for all t ≥ 0.

Therefore, at each transition, the chains couple with probability ε, so that
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Pr(τC > k) = (1 − ε)k. In addition, for all j < k, Pr(Nk < j) = 0 since

(Xt,Yt)
∞
t=0 returns to C × C at every step.

The conditions of Theorem 5 are very strong, and instances of MCMC

algorithms that satisfy all of them are very rare. Therefore, an upper bound

on Pr(Nk < j) is usually necessary. The verification of a drift condition takes

care of this.

3.2.2 Role of the Drift Condition

In order to obtain an upper bound on Pr(Nk < j), note first that if Nk < j,

then rj > k. Therefore,

Pr(Nk < j) = Pr(rj > k)

= Pr

(
r1 +

j∑
i=2

(ri − ri−1) > k

)
.

This implies that for any α > 1,

Pr

(
r1 +

j∑
i=2

(ri − ri−1) > k

)
= Pr

(
αr1+

∑j
i=2(ri−ri−1) > αk

)
≤ 1

αk
E

[
αr1

j∏
i=2

αri−ri−1

]
,

by the Markov Inequality.

The goal here is to bound the exponential moments of the times the pair

of chains spends outside of C×C. This is generally difficult, but the following

lemma (Rosenthal, 1995) provides the ability to obtain an upper bound on

the total variation distance between Kk and π without having to find the

exponential moments of the time between the returns of (Xt,Yt)
∞
t=0 to C × C.
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Lemma 14. (Rosenthal, 1995) Let (Xt)
∞
t=0, (Yt)

∞
t=0, and ri, i = 1, 2, . . . be

defined as above. Suppose there exists a constant α > 1 and a function h :

Rm × Rm 7→ [1,∞) such that

E [h(X1,Y1)|X0 = x,Y0 = y] ≤ α−1h(x,y) ∀(x,y) ∈ C × C.

Then for any integer i > 1 and any choice of r1, . . . , ri−1 such that r1 < r2 <

. . . < ri−1,

1) E [αr1 ] ≤ Eψ×π [h(X0,Y0)] and for i > 1 and any choice of r1, . . . , ri−1,

2) E [αri−ri−1|r1, . . . , ri−1] ≤ sup(x,y)∈C×C E [h(X1,Y1)|X0 = x,Y0 = y] .

Suppose (Xt)
∞
t=0 satisfies a minorization condition on a small set C for some

ε < 1 and density q(·), and suppose that (Xt)
∞
t=0 also satisfies the conditions

of Lemma 14 for some function h : Rm × Rm 7→ [1,∞) and a fixed α > 1.

Set A = sup(x,y)∈C×C E [h(X1,Y1)|X0 = x,Y0 = y]. The result of Lemma 14

implies that

Pr(Nk < j)

≤ α−kE

[
αr1

j∏
i=2

αri−ri−1

]

≤ α−k

(
j∏
i=2

E
[
αri−ri−1|r1, . . . , ri−1

])
E [αr1 ]

= α−k+j−1Aj−1Eψ×π [h(X0,Y0)] ,

where ψ denotes the distribution from which X0 is drawn. The above work

brings us closer to geometric ergodicity, but since π is not known in general,

it is difficult to bound Eψ×π [h(X0,Y0)]. This problem can be circumvented if
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it can be shown that (Xt)
∞
t=0 satisfies a drift condition.

Suppose (Xt)
∞
t=0 satisfies a drift condition, so that there exists a function

V : Rm 7→ [1,∞) and constants λ ∈ (0, 1) and b <∞ such that for all x ∈ C,

E [V (X1)|X0 = x] ≤ λV (x) + bIC(x),

and let h(x,y) = 1 + V (x) + V (y). Meyn and Tweedie (2009) show that

Eψ×π [h(X0,Y0)] ≤ 1 + Eψ [V (X0)] +
b

1− λ
.

The result of Meyn and Tweedie (2009) yields the following upper bound on

Pr(Nk < j) :

Pr(Nk < j) ≤ α−kαj−1Aj−1

(
1 + Eψ [V (X0)] +

b

1− λ

)
.

Since j < k, there exists r ∈ (0, 1) such that j = rk + 1, and the total

variation distance between Kk and π is bounded in the following way.

‖Kk(x, ·)− π(·)‖TV ≤ (1− ε)rk + α−k+rkArk
(

1 + Eψ [V (X0)] +
b

1− λ

)
= (1− ε)rk +

(
α−(1−r)Ar

)k (
1 + Eψ [V (X0)] +

b

1− λ

)
.

Choose r so that α−(1−r)Ar < 1, let

κ = max
{

(1− ε)r, α−(1−r)Ar
}
,

and let R(x) = 1 + Eψ [V (X0)] + b
1−λ . These representations provide the fol-

lowing result:

‖Kk(x, ·)− π(·)‖TV≤ R(x)κk.

Therefore, if (Xt)
∞
t=0 satisfies a minorization condition and an associated

drift condition, then (Xt)
∞
t=0 is geometrically ergodic. The association between
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the minorization and drift conditions is in the small set. Note that the mi-

norization condition and the drift condition each depend on C. The roles of

each condition demonstrate why this is necessary. Returning to the coupling

(Xt,Yt)
∞
t=0, recall that each time the pair of chains enters C × C, there is a

chance for the chains to couple. The minorization condition ensures that the

chain requires only a geometric number of such opportunities in order to guar-

antee convergence. The drift condition guarantees that the distribution of the

times between returns to C × C has tails that are thin enough to ensure that

these times have finite exponential moments.

Rosenthal (1995) takes the use of the drift and minorization conditions a

step further by showing that they can be used not only to verify geometric

ergodicity, but that the values of ε, λ, and b can be used to provide an explicit

upper bound on the mixing time.

Theorem 6. (Rosenthal, 1995) Suppose that for a function V : Rm 7→ [1,∞)

and constants λ ∈ (0, 1) and b <∞,(Xt)
∞
t=0 satisfies

E [V (X1)|X0 = x] = λV (x) + bIC(x)

for all Rm, where C = {x : V (x) ≤ d} and d > 2b
1−λ − 1. Suppose also that for

some ε > 0 and some probability measure Q(·) on B(Rm),

K(x, A) ≥ εQ(A)

for all A ∈ B(Rm) and for all x ∈ C. Then for any r ∈ (0, 1) with (Xt)
∞
t=0

beginning in the initial distribution ψ,

‖Kk(X0, ·)− π(·)‖TV≤ (1− ε)rk +
(
α−(1−r)Ar

)k (
1 +

b

1− λ
+ Eψ [V (X0)]

)
,

75



where α−1 = λ+ [b+ (1− λ)] /
[
1 + d−1

2

]
and A = 1 + (λd+ b).

All of the work presented in this section has been dependent on a one-step

minorization condition. Verification of a more general minorization condition

can be used to guarantee geometric ergodicity.

A Markov chain (Xt)
∞
t=0 on Rm with transition kernel K(x, ·) satisfies an

m0-step minorization condition if there exists a probability measure Q(·), a

small set C ⊂ Rm, a positive integer m0 and ε ∈ (0, 1) such that

Km0(x, A) ≥ εQ(A) for all x ∈ C, (3.2)

for all A ∈ B(Rm). This more general minorization condition is very important

to the work presented later in this dissertation. The establishment of geometric

ergodicity using this minorization condition is a straightforward extension of

the work above.

3.3 The Random-Scan Metropolis Algorithm

The RSM algorithm is a version of the Metropolis-Hastings algorithm that

updates one parameter at a time. Let (Xt)
∞
t=0 be a Markov chain on Rm,

where X0 is drawn from some initial distribution ψ whose density has the

same support as does the target distribution. Given Xt, obtain Xt+1 in the

following way. First choose one of the components of Xt uniformly at random.

The chosen entry, say X
(i)
t , i ∈ {1, 2, . . .m}, is updated as follows. From a

symmetric increment density qi(·), draw an increment value y. The increment

is added to X
(i)
t , so that the proposed value is X∗ = Xt + yei, where ei is the

unit vector in the ith direction.
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Let p(·) denote the target density for (Xt)
∞
t=0. Then Xt+1 = Xt + yei with

probability

αi(Xt,X
∗) = min

{
1,
p(X∗)

p(Xt)

}
.

Given that the ith entry has been selected for updating, the conditional tran-

sition density is

ki(Xt+1|Xt) = αi(Xt,X
∗)qi(y)

m∏
j=1
j 6=i

δ
X
(j)
t

(X
(j)
t+1) +

(∫
R

(1− αi(Xt,X∗)qi(y)) dy

)
δXt(Xt+1),

where δx(·) is the Dirac mass measure at x. Since the parameter to be updated

is chosen uniformly at random, obtaining the full transition density amounts

to simply averaging the m conditional transition densities, so that

k(Xt+1|Xt) =
1

m

m∑
i=1

ki(Xt+1|Xt). (3.3)

3.4 Geometric Ergodicity of the Random Scan Met-
ropolis Sampler

For an RSM algorithm on Rm, there are several methods of verifying ge-

ometric ergodicity that work by providing conditions that are sufficient to

ensure satisfaction of a drift and an associated minorization condition. These

methods are useful because for the RSM algorithm, a drift function is often

difficult to find analytically, and this makes direct verification of a drift and

a minorization condition difficult. These methods provide a way to deal with

this challenge.
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Roberts and Tweedie (1996) provide a set of four conditions on the curva-

ture of the contour manifold {y : p(y) = p(x)} as ‖x‖→ ∞ of the target den-

sity. These four conditions together ensure geometric ergodicity of the RSM

sampler. Verification of these conditions is not easy for many applications of

the RSM sampler, including the one that is described later in this chapter.

Jarner and Hansen (2000) provide a set of conditions that ensure geometric

ergodicity of the RSM algorithm under the condition that the target density

is super-exponential. This means that

lim
‖x‖→∞

n(x)∇ log p(x) = −∞,

where n(x) is the unit vector x/‖x‖ and ∇ denotes the gradient. This method

requires taking partial derivatives of the log target density. While this method

and the method of Roberts and Tweedie (1996) ensure the satisfaction of a

drift and a minorization condition, neither of them provide a drift function.

Fort et al. (2003) describes a method that takes care of this.

Fort et al. (2003) provide a sufficient set of three assumptions on p that

ensure geometric ergodicity of the RSM sampler. Their work establishes ge-

ometric ergodicity of the RSM sampler with essentially no conditions on the

curvature of the contour manifold of p. These assumptions are easier to verify

than those given by Roberts and Tweedie (1996) and Jarner and Hansen (2000)

for our RSM sampler, so we choose to verify the conditions of Fort et al. (2003)

in order to establish geometric ergodicity of an RSM sampler for estimating

the posterior density of the branch lengths of a phylogenetic tree.
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The assumptions of Fort et al. (2003) ensure that the target density is pos-

itive, continuous, and bounded on Rm, that the tails of the target density are

decreasing, and that the target density is bounded away from 0 on compact

sets. The formal statement of these assumptions is as follows:

Assumption 1 The stationary distribution π is absolutely continuous with

respect to λm, with positive and continuous density p(·) on Rm.

Assumption 2 Let {qi}mi=1 be a family of symmetric increment densities with

respect to λ1, the one-dimensional Lebesgue measure. There exist con-

stants ηi > 0 and δi < ∞ for all i ∈ {1, 2, . . . ,m} such that qi(y) ≥ ηi

whenever |y|≤ δi.

Assumption 3 There exist constants δ and ∆ with 0 ≤ δ < ∆ ≤ +∞ such

that

ξ := inf
1≤i≤m

∫ ∆

δ

qi(y)λ1(dy) > 0. (3.4)

In addition, for any sequence x = {xn} with limn→∞‖xn‖= +∞, it is

possible to extract a subsequence x̃ = {x̃n} with the property that, for

some i ∈ {1, 2, . . . ,m} and for all y ∈ [δ,∆],

lim
n→∞

p(x̃n)

p(x̃n − sign(x̃n)yei)
= 0 and lim

n→∞

p(x̃n + sign(x̃n)yei)

p(x̃n)
= 0, (3.5)

where p(·) is the target density for the RSM algorithm on Rm.

The following theorem (Fort et al., 2003) provides a drift function if Assump-

tions 1, 2, and 3 hold.
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Theorem 7. Assume that Assumptions 1, 2, and 3 hold, and let s ∈ (0, 1)

such that

s(1− s)
1
s
−1 <

ξ

m− 2ξ
, (3.6)

where ξ is defined as in (3.4). Let Vs(x) := [p(x)]−s. Then there exist constants

λ ∈ (0, 1) and b <∞ as well as a small set C ∈ B(Rm) such that

E [Vs(Xt+1)|Xt = x] ≤ λVs(x) + bIC(x), (3.7)

for all x ∈ Rm.

3.5 An RSM Algorithm for Bayesian Inference of the
Branch Lengths

Theorem 7 implies that verification of Assumptions 1, 2, and 3 for any RSM

sampler is sufficient to ensure that the sampler is geometrically ergodic. Our

approach to approximating the posterior density of the branch lengths relies

on a version of the RSM algorithm. In this description, D shall denote the set

of DNA sequence data for the individuals at the leaves of the tree. We assume

the tree topology is known or has been inferred, and we assume that the tree is

unrooted. Whether or not the tree is rooted is irrelevant to the RSM algorithm

we describe, since by the Pulley Principle, there is no information about the

likelihood in the placement of the root. The payoff of assuming unrootedness

is a one-dimension reduction in the state space.

The assumption of unrootedness implies that the vector t of branch lengths

is in [0,∞)2n−3, where n is the number of leaves on the tree. Let φ(·) denote

the prior density for the branch lengths t, and let the increment density qi(·) be
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the U [−γ, γ] density for each i ∈ {1, 2, . . . , 2n− 3}, where γ > 0 is fixed. The

choice of γ is made in such a way that it ensures that the algorithm accepts a

proposal at a rate that is optimal for mixing behavior. As is usual in Bayesian

analysis, the target density is known up to a normalizing constant:

p(t|D) ∝ L(D|t)φ(t).

We require that p is positive and continuous over all of R2n−3, but since the

branch lengths are non-negative, φ(t) = 0 for all values of t that have at least

one negative component. A solution to this problem is to re-parameterize the

branch lengths. Many transformations exist that result in the satisfaction of

our requirement, but the natural log transformation is a continuous, one-to-

one, monotone increasing transformation, so its inverse is well-defined. This

makes conversion of the log branch lengths very simple, and makes the log

transformation a good choice of a transformation for the branch lengths. The

nice mathematical properties of the log transformation enable easy transfor-

mation of the likelihood, so that if w = log(t), the likelihood can be written

in terms of w:

L(D|t) = L(D|ew),

where ew denotes the vector that results from the replacement of each com-

ponent of w by the exponentiated value of that component. We omit the

exponentiation of w and denote the likelihood by L(D|w).

The Markov chain (Wt)
∞
t=0 associated with the RSM sampler that updates

the log branch lengths begins with a choice of an initial value W0 from a den-

sity that has the same support as the target density. The prior distribution is
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one of many good candidates for the initial distribution, provided it has the

required support, and we use it as such for our version of the RSM algorithm.

Once an initial value W0 is drawn from φ(·), choose a component i ∈

{1, 2, . . . , 2n− 3} uniformly at random, and an increment y ∼ qi(·). Given

Wt, the proposal for Wt+1 is W∗ = Wt+yei, and this proposal is accepted with

probability

αi(Wt,W
∗) = min

{
1,
L(D|W∗)φ(W∗)

L(D|Wt)φ(Wt)

}
.

Calculation of the Likelihood

To complete the derivation of the transition kernel, it is necessary to find

p(w|D). Recall that for branch lengths t, the likelihood L(D|t) is given by

L(D|t) =
∑
s1

∑
s2

πs1Pr(s2|s1, t
(1))Ls1(1)Ls2(2), (3.8)

where πs1 is the equilibrium probability of s1, s1 ∈ {A,C,G, T}. Recall also

that under the Jukes-Cantor model, for two nucleotides r and s,

Pr(r|s, w) =

{
1
4

+ 3
4
e−

4
3
ew if r = s

1
4
− 1

4
e−

4
3
ew if r 6= s.

We define the following three terms, none of which depend on w(1), the first

entry in the log branch length vector. An illustration that indicates the reason

that these three quantities do not depend on w(1) is provided in Figure 3.1.

Define the following quantities:

K1 =
∑
s1

Ls1(1)

K2 =
∑
s2

Ls2(2)

J =
∑
s1

Ls1(1)Ls1(2).
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The likelihood can be written in terms of J,K1, and K2 as follows:

L(D|w) =
1

4

[(
1

4
+

3

4
e−

4
3
ew

(1)
)
J +

(
1

4
− 1

4
e−

4
3
ew

(1)
)

(K1K2 − J)

]
=

1

4

[
1

4
K1K2 +

(
J − 1

4
K1K2

)
e−

4
3
ew

(1)
]
. (3.9)

Figure 3.1: The conditional likelihood Ls1(1) represents the likelihood of the
subtree on the left side of the unrooted tree above given the nucleotide base s1

is observed at node 1, with Ls2(2) representing a similar quantity pertaining

to node 2. Since the branch with length ew
(1)

is not a part of either of the two
outer subtrees, neither Ls1(1) nor Ls2(2) depend on w(1).

In general, the DNA sequences at the leaves will have some number N > 1

of sites apiece. Recall that in likelihood calculation, it is usually assumed that

evolution is independent between sites. Therefore, we can treat the vector of

bases at each site as a one-site data set and then calculate the likelihood as

in (3.9). The full likelihood is then obtained by taking the product of all N

one-site likelihoods.

In Bayesian phylogenetic inference, common branch length priors include

the exponential, lognormal, and gamma densities. The branch length units

are in expected number of substitutions per site, and this number is typically
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small. This leads to data sets for which a high percentage of sites have no mu-

tations (i.e. sites for which the nucleotide base is the same in each sequence).

We refer to these as constant sites. The the normal density is symmetric, and

therefore puts equal weight on large and small branch lengths. The expo-

nential, lognormal, and gamma densities are all right-skewed densities, so they

put more weight on small branch lengths than they do on large branch lengths.

While smaller branch lengths are what is expected with a realistic data set,

values that are extremely close to 0 are associated with data sets which have

an unrealistically high percentage of constant sites. Of the three densities, the

lognormal places the least weight on these extremely small branch lengths. In

addition, the other priors mentioned have tails that are too thick to allow the

methods of Fort et al. (2003) to be used to verify geometric ergodicity of our

RSM algorithm for inferring branch lengths. As a result, we place a lognormal

prior density on the branch lengths in such a way that the branch lengths are

uncorrelated. The prior assumption that the branch lengths are uncorrelated

is an unrealistic one, but it is, nonetheless, a common assumption in phylo-

genetic analysis (see Mar et al. (2005),Yang and Rannala (2005), and Brown

et al. (2010) for examples). Given a vector µ and a constant σ2 > 0, for all

i ∈ {1, 2, . . . , 2n− 3}, the ith branch length has a lognormal(µ(i), σ2) distribu-

tion. The placement of this prior distribution on the branch length implies

that the prior density for the log branch lengths is the N2n−3(µ, σ2I2n−3) den-

sity. For the case in which the DNA sequences each have one site, the target
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density, up to a normalizing constant, is

p(w|D) ∝ exp

{
− 1

2σ2

2n−3∑
i=1

(w(i) − µ(i))2

}

×
(

1

4
K1K2 +

(
J − 1

4
K1K2

)
e−

4
3
w(1)

)
.

3.6 Geometric Ergodicity of the RSM Algorithm for In-
ference of the Branch Lengths

In this section, we establish geometric ergodicity of (Wt)
∞
t=0 by verifying

that the three assumptions made by Fort et al. (2003) are satisfied.

Theorem 8. The Markov chain (Wt)
∞
t=0 is geometrically ergodic.

Proof. For the RSM algorithm described in Section 3.5, we verify the three

assumptions outlined in Section 3.4.

Verification of Assumption 1

For Assumption 1, it is required to show that the target density p is pos-

itive and continuous over R2n−3. This is false only if at least one of the site

likelihoods is 0. Recall from (3.8) that the site likelihood is a sum of products

of three non-negative terms: one base substitution probability and two condi-

tional likelihoods. Therefore, each of the summands in the site likelihood must

be 0, which means that either the base substitution probability or one of the

conditional likelihoods is 0.

Under the Jukes-Cantor model, for nucleotide bases r and s, the substitu-

tion probability can only be 0 if r 6= s. If r 6= s,

Pr(r|s, t) =
1

4
− 1

4
e−

4
3
t.
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This probability is equal to 0 only if t = 0.

The conditional likelihood is a sum of products of substitution probabilities,

so if each summand in the conditional likelihood is 0, then some of the substi-

tution probabilities are 0. Therefore, a necessary condition for the likelihood

to be 0, is that at least one branch length is 0. By our formulation, t(i) = ew
(i)

for all i ∈ {1, 2, . . . , 2n− 3}, so that t(i) > 0 for all i ∈ {1, 2, . . . , 2n− 3}. This

and the fact that the prior density is the N(µ, σ2I2n−3) density implies that

the target density p is positive for all w ∈ R2n−3. In addition, p is continuous

in w over R2n−3, so Assumption 1 is verified.

Verification of Assumption 2

Assumption 2 is easily verified, since the increment density is uniform on

the interval [−γ, γ] for each log branch length. In keeping with the nota-

tion in the statement of Assumption 2, let ηi = 1
2γ

and let δi = γ for each

i ∈ {1, 2, . . . , 2n− 3}. Then qi(y) = ηi whenever |y|≤ γ, thus verifying As-

sumption 2.

Verification of Assumption 3

Using the notation from the statement of Assumption 3, let δ = 0 and

∆ = γ. Since the increment density associated with each log branch length is
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the U [−γ, γ] density, we obtain the following.

ξ := inf
1≤i≤2n−3

∫ γ

0

qi(y)dy

=

∫ γ

0

1

2γ
dy

=
1

2
> 0,

and this verifies the first part of Assumption 3.

Let {wk}∞k=0 be a sequence of log branch lengths with the property that

‖wk‖→ ∞ as k → ∞. If ‖wk‖→ ∞, then at least one of the log branch

lengths has magnitude that tends to infinity. Therefore, there exists j ∈

{1, 2, . . . , 2n− 3} and a subsequence {w̃k}∞k=0 such that if k → ∞, either

w̃
(j)
k → −∞ or w̃

(j)
k → ∞. To verify Assumption 3, it suffices to show that

both limits in the statement of Assumption 3 are 0 in each of these two cases.

Doing this is equivalent to verifying that both limits are 0 if w
(j)
k → −∞ as

k → ∞ and if w
(j)
k → ∞ as k → ∞. Without loss of generality, assume

|w(1)
k |→ ∞ as k →∞.

Our approach to verifying Assumption 3 consists of establishing a finite up-

per bound on the likelihood ratio and then showing that the prior ratio tends

to 0 as |w(1)|→ +∞. Assume D is a set of DNA sequences that have one site

apiece. We first show that

lim
k→∞

p(wk|D)

p(wk − sign(w
(1)
k )ye1|D)

= 0. (3.10)
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The expansion of the limit on the left side of (3.10) gives

lim
k→∞

p(wk|D)

p(wk − sign(w
(1)
k )ye1|D)

= lim
k→∞

L(D|wk)φ(wk)

L(D|wk − sign(w
(1)
k )ye1)φ(wk − sign(w

(1)
k )ye1)

= lim
k→∞

e−
1

2σ2
(w

(1)
k −µ

(1))2

e−
1

2σ2
(w

(1)
k −µ(1)−sign(w

(1)
k )y)2

×
1
4
Kk1K2k + (Jk − 1

4
K1kK2k)e

− 4
3
e
w
(1)
k

1
4
K1kK2k + (Jk − 1

4
K1kK2k)e

− 4
3
e
w
(1)
k

−sign(w
(1)
k

)y
.

First, let w
(1)
k → −∞. If for a fixed value of k, Jk − 1

4
K1kK2k < 0,

1

4
K1kK2k +

(
Jk −

1

4
K1kK2k

)
e−

4
3
e
w
(1)
k ≤

1

4
K1kK2k +

(
Jk −

1

4
K1kK2k

)
e−

4
3
e
w
(1)
k

+y

, (3.11)

for all y ≥ 0.

Observe two things from (3.11). First, we deal only with the case in which

y ≥ 0 because that is all that is required to satisfy Assumption 3. Second,

the sign function does not appear in the exponent in the denominator because

w
(1)
k → −∞. Therefore, we only deal with the tail of the sequence, and in the

tail, w
(1)
k < 0. A direct consequence of (3.11) is that

1
4
K1kK2k +

(
Jk − 1

4
K1kK2k

)
e−

4
3
e
w
(1)
k

1
4
K1kK2k +

(
Jk − 1

4
K1kK2k

)
e−

4
3
e
w
(1)
k

+y
≤ 1
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as w
(1)
k →∞, for y ≥ 0. If Jk − 1

4
K1kK2k ≥ 0 for a fixed value of k,

1

4
K1kK2k +

(
Jk −

1

4
K1kK2k

)
e−

4
3
e
w
(1)
k

≤ Jk

[
1 + e−

4
3
e
w
(1)
k

]
≤ 2Jk

≤ 2K1kK2k

≤ 2K1kK2k + 8

(
Jk −

1

4
K1kK2k

)
e−

4
3
e
w
(1)
k

+y

= 8

(
1

4
K1kK2k + (Jk −

1

4
K1kK2k)e

− 4
3
e
w
(1)
k

+y

)
.

Since the quantity in parentheses in the last expression is equal to the likelihood

given in (3.9), the quantity on the right-hand side of the equal sign is bounded

above by 8. This gives an upper bound of 8 on the likelihood ratio. Therefore,

lim
k→∞

p(wk|D)

p(wk − sign(w
(1)
k )ye1|D)

≤

8 lim
k→∞

exp

{
1

σ2
(w

(1)
k − µ

(1))y +
1

2σ2
y2

}
. (3.12)

Note that the limit on the right hand side of (3.12) is 0, so the limit of the

ratio of the target densities is established for the case where w
(1)
k → −∞.

If w
(1)
k → ∞, then bound the likelihood ratio in the following way.

L(wk|D)

L(wk − sign(w
(1)
k )ye1|D)

=
1
4
K1kK2k + (Jk − 1

4
K1kK2k)e

− 4
3
e
w
(1)
k

1
4
K1kK2k + (Jk − 1

4
K1kK2k)e

− 4
3
e
w
(1)
k

−y

≤
3
4
K1kK2k + 3

4
K1kK2ke

− 4
3
e
w
(1)
k

1
4
K1kK2k − 1

4
K1kK2ke

− 4
3
e
w
(1)
k

−y

=
3(1 + e−

4
3
e
w
(1)
k )

1− e− 4
3
e
w
(1)
k

−y
(3.13)
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The limit as w
(1)
k → ∞ of the last expression on the right-hand side of (3.13)

is 3, so

lim
k→∞

p(wk|D)

p(wk − ye1|D)
≤

3 lim
k→∞

exp

{
− 1

σ2
(w

(1)
k − µ

(1))y +
1

2σ2
y2

}
. (3.14)

It is easily verified that the limit on the right hand side of (3.14) is 0, thus

establishing the second part of Assumption 3.

To verify the final part of Assumption 3, we use a similar approach to that

used to establish the left side of (3.5). Observe that if w
(1)
k → −∞ as k →∞,

lim
k→∞

p(wk + sign(w
(1)
k )ye1|D)

p(wk|D)
=

lim
k→∞

e−
1

2σ2
((w

(1)
k −µ

(1))−y)2

e−
1

2σ2
(w

(1)
k −µ(1))2

×
1
4
K1kK2k + (Jk − 1

4
K1kK2k)e

− 4
3
e
w
(1)
k

−y

1
4
K1kK2k + (Jk − 1

4
K1kK2k)e

− 4
3
e
w
(1)
k

.

Suppose Jk − 1/4K1kK2k < 0 for some k. Then for y ≥ 0,

1
4
K1kK2k + (Jk − 1

4
K1kK2k)e

− 4
3
e
w
(1)
k

−y

1
4
K1kK2k + (Jk − 1

4
K1kK2k)e

− 4
3
e
w
(1)
k

≤ 1.

If for a fixed value of k, Jk − 1/4K1kK2k ≥ 0, we obtain an upper bound of

8 on the likelihood ratio by a parallel argument to that used to bound the

likelihood ratio in the other limit specified in Assumption 3. Therefore, the

likelihood ratio is bounded above by 8 in the tail of {wk}∞k=0, and

lim
k→∞

p(wk − ye1|D)

p(wk|D)
≤ 8 lim

k→−∞
exp

{
1

σ2
(w

(1)
k − µ

(1))y − 1

2σ2
y2

}
.

Observe that this limit is equal to 0. As w
(1)
k → ∞, we obtain a limit of 0

on the posterior ratio in a manner similar to that which was used to establish

90



part 2 of Assumption 3.

The preceding work establishes Assumption 3 when each of the sequences

at the leaves of the tree have one site. One thing to observe when the DNA

sequences have one site is that in none of the situations described above does

the limit of the upper bound on the likelihood ratio exceed 8. The assumption

of independence of evolution among sites implies that when the DNA sequences

each have N ≥ 1 sites, the likelihood ratio is asymptotically bounded above

by 8N . Since the prior density does not depend on the data, it doesn’t change

when the number of sites changes from 1 to N . Therefore, the prior ratios

from (3.5) do not change, and their limits are 0 as ‖wk‖→ ∞. This completes

verification of Assumption 3 and establishes geometric ergodicity of (Wt)
∞
t=0.

Since all three of the assumptions of Fort et al. (2003) hold for (W)∞t=0, it

follows that (Wt)
∞
t=0 is geometrically ergodic.

We have verified that (Wt)
∞
t=0 is geometrically ergodic without directly ver-

ifying a drift and a minorization condition. However, knowing that a Markov

chain is geometrically ergodic does not give a lot of insight into the mixing

time of the chain. Gaining insight into this requires the verification of a drift

and a minorization condition, and we take this up in the next chapter.
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Chapter 4: Assessing Convergence of the Random Scan

Metropolis Algorithm for Inference of the Branch

Lengths

The results of Chapter 3 establish geometric ergodicity of the RSM sampler

with a N(µ, σ2I2n−3) prior distribution on the log branch lengths of a phyloge-

netic tree with a known tree topology, but they give no indication of the rate

at which the chain converges to its stationary distribution. In this chapter, we

take a significant step toward resolving this by providing a minorization and

an associated drift condition. It is important to note that the methods of Fort

et al. (2003) implicitly verify that a drift and a minorization condition hold.

Therefore, Theorem 8 could be proven by verifying that a drift and an asso-

ciated minorization condition are satisfied. In some situations, such as those

in which it is only necessary to know a chain is geometrically ergodic (say,

for use of Central Limit Theorems for ergodic averages), the methods of Fort

et al. (2003) will suffice. However, in situations where the goal is to bound the

mixing time, the best hope is to verify a drift and a minorization condition.

We provide a minorization condition by way of analytical methods, and
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then present a Monte Carlo method of obtaining a lower bound on the mi-

norization parameter ε. The Monte Carlo method provides a lower bound on

ε that is more helpful in obtaining an upper bound on the mixing time of

(Wt)
∞
t=0, Markov chain associated with the RSM algorithm presented in Chap-

ter 3. Following the establishment of a minorization condition, we numerically

establish an associated drift condition by way of a Monte Carlo integration

method. Once a minorization and an associated drift condition are estab-

lished, we describe in detail some commonly-used output-based methods of

convergence assessment, and we comment on some of the benefits and caveats

of such methods. The chapter closes with an illustrative example of all the con-

vergence assessment methods described in this chapter, and we also provide

a graphical description of how the chain behaves with different prior distri-

butions and for DNA sequence data with sequences of varying lengths and

percentages of constant sites.

4.1 A Minorization Condition

Assume the mean vector µ for the prior distribution is equal to µ12n−3,

where µ ∈ R. Recall the transition density

k(Wt+1|Wt) =
1

2n− 3

2n−3∑
i=1

ki(Wt+1|Wt),

where

ki(Wt+1|Wt) = αi(Wt,W
∗)qi(y)

2n−3∏
j=1
j 6=i

δ
W

(j)
t

(W
(j)
t+1) +

(∫
R

(1− αi(Wt,W
∗)qi(y)) dy

)
δWt(Wt+1).
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The Dirac masses in the transition density pose a significant challenge in veri-

fying a minorization condition. One way to deal with this is to verify a (2n−3)-

step minorization condition. To do this, consider the (2n− 3)-step transition

density

k(Wt+2n−3|Wt) =©2n−3
j=1 k(Wt+j|Wt+j−1),

where © denotes the kernel composition operator. The full expansion of this

composition is necessary to verify a (2n − 3)-step minorization condition. To

begin the expansion, write k(Wt+2n−3|Wt) in the following way:

©2n−3
j=1 k(Wt+j|Wt+j−1)

=

∫
R2n−3

. . .

∫
R2n−3

2n−3∏
j=1

k(Wt+j|Wt+j−1)dWt+1 . . . dWt+2n−4

=

∫
R2n−3

. . .

∫
R2n−3

2n−3∏
j=1

(
1

2n− 3

2n−3∑
i=1

ki(Wt+j|Wt+j−1)

)
dWt+1 . . . dWt+2n−4. (4.1)

Let S be the set of all possible samples of size 2n− 3, drawn with replace-

ment, from {1, 2, . . . , 2n− 3}. Note that the expression in (4.1) is a sum of

compositions of conditional transition densities given the log branch length

that is chosen to be incremented. This expression can be written more con-

cisely as a sum over all samples s, with replacement, from {1, 2, . . . , 2n− 3}:

k(Wt+2n−3|Wt) =
1

(2n− 3)2n−3

∑
s∈S

©2n−3
j=1 ks(j)(Wt+j|Wt+j−1),

where s(j) is the jth element of the sample s. If R is the set of all possible

permutations of the elements of {1, 2, . . . , 2n− 3}, then since R ⊂ S,

k(Wt+2n−3|Wt) ≥
1

(2n− 3)2n−3

∑
r∈R

©2n−3
j=1 kr(j)(Wt+j|Wt+j−1). (4.2)
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Omitting the second term in the sum in the transition density for the RSM

algorithm provides the next step in obtaining a lower bound on the (2n− 3)-

step transition density:

©2n−3
j=1 kj(Wt+j|Wt+j−1)

≥
∫
R2n−3

. . .

∫
R2n−3

2n−3∏
j=1

2n−3∏
i=1
i 6=j

δ
W

(i)
t+j−1

(W
(i)
t+j)


×αj(Wt+j−1,Wt+j)qj(W

(j)
t+j|W

(j)
t+j−1)dWt+1 . . . dWt+2n−4. (4.3)

Now consider the set C = [µ− 3γ/2, µ+ 3γ/2]2n−3, where γ is the maxi-

mum increment for a log branch length, and recall that the proposal density

given the log branch length that is chosen to be incremented is

qj(W
(j)
t+j|W

(j)
t+j−1) =

1

2γ
I[

W
(j)
t+j−1−γ,W

(j)
t+j−1+γ

](W(j)
t+j).

Then if Wt is in C, each log branch length is between µ− 3γ/2 and µ+ 3γ/2.

This implies that

qj(W
(j)
t+j|W

(j)
t+j−1) ≥ 1

2γ
I[µ−γ/2,µ+γ/2](W

(j)
t+j). (4.4)

To see the result of (4.4), note that the composition in (4.3) updates the

log branch lengths in order. Therefore, if Wt is in C, then W
(j)
t+j−1 is between

µ − 3γ/2 and µ + 3γ/2 for each j ∈ {1, 2, . . . , 2n− 3}. Since γ is the largest

possible change in W
(j)
t+j−1 in either direction, it follows that W

(j)
t+j cannot lie

between µ−γ/2 and µ+γ/2 unless W
(j)
t+j−1 is between µ− 3γ/2 and µ+ 3γ/2.

In the expression in (4.3), the integration of the αj terms presents a daunt-

ing mathematical challenge due to the complexity of the likelihood function.
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One way to deal with this problem is to derive a lower bound on the product

of the αj terms in such a way that the parts that are difficult to integrate are

bounded by a constant value. To begin, expand the product in (4.3) in the

following way:

2n−3∏
j=1

αj(Wt+j−1,Wt+j) =

2n−3∏
j=1

min

{
1,
L(D|Wt+j)e

− 1
2σ2

(W
(j)
t+j−µ)2

L(D|Wt+j−1)e−
1

2σ2
(W

(j)
t+j−1−µ)2

}
. (4.5)

Recall the form of the likelihood:

L(D|w) =

[
1

4

∑
s1

∑
s2

Pr(s2|s1, e
w(1)

)Ls1(1)Ls2(2)

]N
.

The conditional likelihoods do not depend on w(1), and under the Jukes-Cantor

Model, we have the following relation:

1

4
− 1

4
e−

4
3
ew

(1)

≤ Pr(s2|s1, e
w(1)

) ≤ 1

4
+

3

4
e−

4
3
ew

(1)

.

Observe that, regardless of which log branch length is chosen for updating,

the likelihood can be written as a sum of products of a transition probability,

which depends on the chosen log branch length, and the conditional likelihoods

at the nodes at each end of the chosen branch, which do not depend on the

chosen log branch length. Therefore, if the jth log branch length is chosen to

be incremented, the likelihood ratio is bounded below in the following way:

L(D|Wt+j)

L(D|Wt+j−1)
≥

 1
4
− 1

4
e−

4
3
e
W

(j)
t+j

1
4

+ 3
4
e−

4
3
e
W

(j)
t+j−1

N . (4.6)

The numerator in the quantity on the right hand side of (4.6) increases in

W
(j)
t+j, while the denominator decreases in W

(j)
t+j−1. Therefore, to obtain a lower
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bound on the likelihood ratio, it is necessary to find the smallest supported

values of W
(j)
t+j−1 and W

(j)
t+j. Recall that if the log branch lengths are updated in

order, then for each j ∈ {1, 2, . . . , 2n− 3}, W(j)
t+j−1 = W

(j)
t . Therefore, W

(j)
t+j−1

is no smaller than µ−3γ/2 if W
(j)
t is in C. As a result, W

(j)
t+j can be no smaller

than µ− 5γ/2, so that

L(D|Wt+j)

L(D|Wt+j−1)
≥

[
1
4
− 1

4
e−

4
3
eµ−5γ/2

1
4

+ 3
4
e−

4
3
eµ−3γ/2

]N
.

This result provides what is needed to complete the derivation of an upper

bound on the expression in (4.5).

2n−3∏
j=1

αj(Wt+j−1,Wt+j)

≥
2n−3∏
j=1

min

1,

[
1
4
− 1

4
e−

4
3
eµ−5γ/2

1
4

+ 3
4
e−

4
3
eµ−3γ/2

]N
e−

1
2σ2

(W
(j)
t+j−µ)2

e−
1

2σ2
(W

(j)
t+j−1−µ)2

 . (4.7)

Since the denominator in the second fraction in the product in (4.7) is smaller

than 1, and since in the composition in (4.3) each log branch length is updated

exactly once in the 2n− 3 steps, a lower bound on the product in (4.7) is[
1
4
− 1

4
e−

4
3
eµ−5γ/2

1
4

+ 3
4
e−

4
3
eµ−3γ/2

](2n−3)N

exp

{
− 1

2σ2

2n−3∑
j=1

(W
(j)
t+2n−3 − µ)2

}

×
2n−3∏
j=1

I[µ−γ/2,µ+γ/2](W
(j)
t+2n−3).

To complete verification of a minorization condition, it remains to bound the

expression

∫
R2n−3

. . .

∫
R2n−3

2n−3∏
j=1

2n−3∏
i=1
i 6=j

δ
W

(j)
t+j−1

(W
(i)
t+j)


×qj(W(j)

t+j|W
(j)
t+j−1)dWt+1 . . . dWt+2n−4. (4.8)
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However, all of the Dirac masses integrate to 1, as do the qj terms when

j < 2n − 4. Therefore, what remains after all of these things are integrated

out is ∫
R2n−3

1

2γ
I[

W
(2n−3)
t+2n−4−γ,W

(2n−3)
t+2n−4+γ

](W(2n−3)
t+2n−3)dW

(2n−3)
t+2n−4

To deal with this term, observe that

I[
W

(2n−3)
t+2n−4−γ,W

(2n−3)
t+2n−4+γ

](W(2n−3)
t+2n−3) = I[

W
(2n−3)
t+2n−3−γ,W

(2n−3)
t+2n−3+γ

](W(2n−3)
t+2n−4).

This result implies that the expression in (4.8) is equal to 1, and that a lower

bound on the product of the alpha terms is[
1
4
− 1

4
e−

4
3
eµ−5γ/2

1
4

+ 3
4
e−

4
3
eµ−3γ/2

](2n−3)N

exp

{
− 1

2σ2

2n−3∑
j=1

(W
(j)
t+2n−3 − µ)2

}

×
2n−3∏
j=1

I[µ−γ/2,µ+γ/2](W
(j)
t+2n−3).

One thing of note from the above work is that due to the dependence

among the log branch lengths in the likelihood function, the transition kernel

may change based on the order in which the log branch lengths are chosen.

However, the methods used to obtain a lower bound provide a lower bound on

the likelihood ratio that does not depend on the order in which the log branch

lengths are updated. In addition, the prior and the increment densities do not

exhibit dependence among the log branch lengths. Thus, provided each of the

log branch lengths are updated in the 2n − 3 steps, the order in which they

are updated is of no consequence to the derivation of a lower bound on the

expression on the right-hand side of (4.1). Since the sum on the right hand

side of (4.2) is over the set of all permutations of {1, 2, . . . , 2n− 3}, it follows
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that there are (2n−3)! summands. We normalize all of the factors of the lower

bound obtained above to show that (Wt)
∞
t=0 satisfies a minorization condition

over the set C = [µ− 3γ/2, µ+ 3γ/2], and

ε =
(2n− 3)!

(2n− 3)2n−3

[
1
4
− 1

4
e−

4
3
eµ−5γ/2

1
4

+ 3
4
e−

4
3
eµ−3γ/2

](2n−3)N

×
[(

Φ
( γ

2σ

)
− Φ

(
−γ
2σ

))√
2πσ2

]2n−3

.

The minorizing density is the N(µ12n−3, σ
2I2n−3) density, where the support

is truncated to [µ− γ/2, µ+ γ/2]2n−3.

Minorization via Monte Carlo Simulations

It is clear that as n and/or N increase, the value of ε decreases very quickly.

This property results in an upper bound on the mixing time that increases

rapidly in both n and N . In an effort to deal with this problem, we propose a

Monte Carlo method to estimate a lower bound on ε. The goal is to obtain a

tighter lower bound on the product

2n−3∏
j=1

min

{
1,
L(D|Wt+j)

L(D|Wt+j−1)

}
.

The algorithm begins with the selection of M1 initial values of Wt from inside

the small set obtained in the previous section. From each starting point, run

M2 (2n− 3)-step chains, and at step j, update the jth log branch length. For

the jth step of the lth chain, compute

min

{
1,
L(D|Wl

t+j)

L(D|Wl
t+j−1)

}
,

and then decide whether or not to accept the proposed value of Wl
t+j by way

of the updating mechanism provided in the description of (Wt)
∞
t=0. For each of
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the M2 chains, calculate

2n−3∏
j=1

min

{
1,
L(D|Wl

t+j)

L(D|Wl
t+j−1)

}
,

and calculate the minimum value of these products over the M2 chains. The

minimum value over the M2 chains provides an intermediate estimate of a

lower bound on ε given the starting point from which each of the M2 chains

are initialized. The next step in this method is to obtain an estimated lower

bound ε̃ by finding the minimum value of the intermediate lower bounds over

the M1 initial values.

Note that since this method is intended to estimate a minimum, it is in-

herently biased so that it is larger than the true minimum. In an effort to

mitigate this concern, we shrink ε̃ by a factor of L, where L is determined by

the variation in the intermediate estimates. This shrinking provides the final

estimated lower bound ε̂ of ε:

ε̂ =
ε̃

L
.

4.2 A Drift Condition

Recall that for a Markov chain (Xt)
∞
t=0, if there exists a small set C, con-

stants λ < 1 and b <∞, and a function V : Rm 7→ [1,∞) such that

E [V (Xt+1)|Xt = x] ≤ λV (x) + bIC(x),

then (Xt)
∞
t=0 satisfies a drift condition. Fort et al. (2003) shows that if (Xt)

∞
t=0

satisfies the three sufficient conditions for geometric ergodicity outlined in
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Chapter 3, then the chain satisfies a drift condition with

V (x) = [p(x)]−s ,

where p is the target density and s ∈ (0, 1) is such that

s(1− s)
1
s
−1 <

ξ

m− 2ξ
,

where

ξ := inf
1≤i≤2n−3

∫ γ

0

qi(y)λ1(dy)

as in Theorem 7.

For our chain and choice of increment density, ξ = 1/2, so that s(1−s) 1
s
−1 <

1
4n−8

. Table 4.1 provides useful values of s for different numbers of leaves.

Table 4.1: Values of s for Varying Numbers of Leaves

Number of Leaves s
3 < 0.5
4 < 0.2892
5 < 0.2030
6 < 0.1564
8 < 0.1071
10 < 0.0814
15 < 0.0509
20 < 0.0370
50 < 0.0140
100 < 0.0070
500 < 0.00014

Let PV (x) = E [V (Xt+1)|Xt = x], and let PiV (x) = E [V (Xt+1)|Xt = x, i],

the expected drift given that the ith log branch length is chosen to be updated.
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Since the log branch length to be updated is chosen uniformly at random,

PV (x) =
1

2n− 3

2n−3∑
i=1

PiV (x).

Let A(y, i) =
{
y : p(x+yei)

p(x)
≥ 1
}

, and let R(y, i) =
{
y : p(x+yei)

p(x)
< 1
}

. Par-

titioning the support of the increment densities into one region of certain ac-

ceptance and one region in which the proposal is potentially rejected allows

the following representation of PiV (x):

PiV (x) =

∫
A(y,i)

V (x + yei)qi(y)dy

+

∫
R(y,i)

V (x + yei)
p(x + yei)

p(x)
qi(y)dy

+ V (x)

∫
R(y,i)

(
1− p(x + yei)

p(x)

)
qi(y)dy. (4.9)

Our method of establishing a drift condition for (Wt)
∞
t=0 is based on the

representation in (4.9). When (4.9) and the drift function provided by Fort

et al. (2003) are applied to (Wt)
∞
t=0, we get

PiV (w) =
1

2γ

∫
A(y,i)

V (w + yei)dy

+
1

2γ

∫
R(y,i)

V (w + yei)
p(w + yei|D)

p(w|D)
dy

+
1

2γ
V (w)

∫
R(y,i)

(
1− p(w + yei|D)

p(w|D)

)
dy.

Due to the complexity of the likelihood function, this integral is mathematically

intractable. Because of this, we present a Monte Carlo integration method to

estimate λ.

Since for w /∈ C,

PV (w)

V (w)
≤ λ,
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our method of estimating λ begins with the selection of M3 starting points wl

that are outside C, l = 1, 2, . . . ,M3. Divide [−γ, γ] into intervals of width v.

Given wl, for each i ∈ {1, 2, . . . , 2n− 3}, find A(y, i) and R(y, i) as follows.

For j ∈ {0, 1, . . . , 2γ/v}, let yj = −γ + vj, and calculate the acceptance

probability α = min
{

1,
p(wl+yjei|D)

p(wl|D)

}
. If α = 1, then yj ∈ A(y, i). Otherwise,

yj ∈ R(y, i). Next, for each starting point, calculate

P̂iV (wl)

V (wl)
=

1

2γ
v

∑
{j:yj∈A(y,i)}

V (wl + yjei)

V (wl)

+
1

2γ
v

∑
{j:yj∈R(y,i)}

V (wl + yjei)

V (wl)

p(wl + yjei|D)

p(wl|D)

+
1

2γ
v

∑
{j:yj∈R(y,i)}

(
1− p(wl + yjei|D)

p(wl|D)

)
.

Once the expected values of the drift given the chosen component of wl are

available, we calculate the average value of these conditional expectations to

obtain an estimated value of λ based on wl:

P̂ V (wl)

V (wl)
=

1

2n− 3

2n−3∑
i=1

P̂iV (wl)

V (wl)
.

Once this process is complete for all l ∈ {1, 2, . . . ,M3}, we calculate the stan-

dard error sλ̂ of the P̂ V (wl)
V (wl)

. Our estimate of λ is

λ̂ = max
l∈{1,2,...,M3}

P̂ V (wl)

V (wl)
+ sλ̂.

We add the standard error because estimation of a maximum inherently pro-

vides estimates that are biased low. The standard error is added in an effort
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to be conservative in our estimation of the maximum.

In the estimation of λ, we have no need to deal with the marginal proba-

bility m(D) of the data set. In the estimation of b, this is not the case. While

the marginal probability of the data set is difficult to obtain, it is possible

obtain an upper bound on m(D). This upper bound will be used to obtain a

Monte Carlo upper bound on b. In order to bound m(D), we view the joint

probability density p(w,D) as the expected likelihood with respect to the prior

density:

m(D) =

∫
R2n−3

L(D|w)φ(w)dw

= Eφ [L(D|w)] .

This representation of m(D) makes it clear that an upper bound on m(D) is

given by supw∈Rm L(D|w), and we use this as an upper bound on m(D) in the

estimation of b.

We are now ready to present the Monte Carlo method of bounding b. To

begin, choose M5 starting points inside C. For each starting point wl, l =

1, 2, . . . ,M5, and for each i ∈ {1, 2, . . . 2n− 3}, we estimate an upper bound

on P̂iV (wl) in the following way.

Let p̂(w|D) be defined as follows:

p̂(w|D) :=
φ(w)L(D|w)

supw∈Rm L(D|w)
.

For each starting point, the acceptance and the potential rejection regions are

obtained in the same way as prescribed in the estimation of λ. Then, letting
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V̂ (w) = [p̂(w|D)]−s, we calculate

P̂iV̂ (wl) =
1

2γ
v

∑
{j:yj∈A(y,i)}

V̂ (wl + yjei)

+
1

2γ
v

∑
{j:yj∈R(y,i)}

V̂ (wl + yjei)
p(wl + yjei|D)

p(wl|D)

+
1

2γ
v

∑
{j:yj∈R(y,i)}

V̂ (wl)

(
1− p(wl + yjei|D)

p(wl|D)

)
.

For each l ∈ {1, 2, . . . ,M5}, calculate P̂ V̂ (wl) in a manner similar to that used

in the estimation of λ, so that

P̂ V̂ (wl) =
1

2n− 3

2n−3∑
i=1

P̂iV̂ (wl).

Next, calculate an intermediate upper bound b̂l on b for each starting point as

follows:

b̂l = P̂iV̂ (wl)− λ̂V̂ (wl),

and then calculate the standard error sb̂ of the b̂l. The estimation of an upper

bound on b is completed by obtaining the maximum of the b̂l values and then

adding sb̂ to this maximum, so that

b̂ = max
l∈{1,2,...,M5}

b̂l + sb̂.

Since this process is estimating an upper bound, the standard deviation of the

b̂l is added in an effort to obtain a conservative upper bound.

The procedures above provide Monte Carlo estimates of λ and a Monte

Carlo upper bound on b that, along with the Monte Carlo lower bound on ε,

can be useful in obtaining an upper bound on the mixing time of the RSM
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algorithm. We will provide an illustrative example of these methods, and what

we will observe is that the estimated lower bound on ε and the estimated up-

per bound on b are not very helpful in providing a useful upper bound on

the mixing time of the Markov chain associated with the version of the RSM

algorithm that we describe. However, the ability to obtain these values repre-

sents a step toward finding an honest upper bound on the mixing time of the

RSM algorithm for Bayesian estimation of the branch lengths of a phylogenetic

tree. This brings us closer to no longer having to rely on ad-hoc convergence

assessment methods, some of which are outlined in the next section.

4.3 Output-Based Methods of Convergence Assessment

In this section, we describe four methods of convergence assessment, each

of which is based on output from the RSM algorithm. The first, and the

simplest, of these methods involves examining trace plots, which are plots of

the parameter value at each iteration against the iteration numbers, and the

acceptance rate of the chain. The second, proposed by Yu and Mykland (1998),

involves looking at a different type of plot. We also present a modification of

the method of Yu and Mykland (1998) that was proposed by Brooks (1996)

and relies on the calculation of a statistic used to measure the “hairiness”

of the plot. The third method (Geweke, 1992) is based on a hypothesis test

for a difference in the mean value of some scalar function of the parameter

values over different regions of the sequence. The final method (Gelman and

Rubin, 1992) is based on the output of several independent chains, and the
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procedure depends on estimation of the factor by which the posterior density is

expected to shrink as the number of steps becomes large. We close this section

by describing the drawbacks of output-based convergence assessment. For a

survey of output-based convergence diagnostics, see Cowles and Carlin (1996)

or Brooks and Roberts (1997).

4.3.1 Trace Plots and Acceptance Rates

The simplest output-based method of convergence assessment is one that

involves looking at trace plots of the individual parameters, or of some func-

tion θ : Rm 7→ R of the parameters. If the chain is mixing well, we should

see regular oscillation around a central value. In other words, we should see

“hairiness” in the plot, and this “hairiness” should be centered around a par-

ticular value. The next four figures show examples of trace plots for chains

that exhibit varying degrees of mixing behavior.

We must also consider the acceptance rate of an MCMC algorithm in our

evaluation of mixing behavior. In our RSM algorithm, we have a univariate

proposal density. Roberts and Rosenthal (2001) show that the optimal ac-

ceptance rate for any type of Metropolis-Hastings algorithm with a univariate

proposal density is 0.44. By optimal, we mean in the sense of mixing behav-

ior. We need a proposal density that proposes moves that are not so large

that they are rarely accepted and thus result in slow exploration of the state

space, but not so small as to be accepted too often. The frequent acceptance

of the small moves results in slow exploration of the state space. The proposal

density must avoid these two extremes, and a typical way to do it is to choose
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Figure 4.1: A trace plot for a Markov chain that exhibits good mixing. The
chain appears to begin roughly in its target distribution. The plot shows
regular oscillation around 3. Though the chain is approximately stationary, it
should still be thinned in order to obtain roughly independent samples from
the target distribution.

a proposal density based on the percentage of the time proposals from it are

accepted. This procedure is known as optimal scaling. As the dimensionality

of the proposal density gets large, the optimal acceptance rate tends to 0.234

(Roberts and Rosenthal, 2001).
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Figure 4.2: A trace plot for a chain that appears to reach its target distribution
in approximately 500 steps. These initial output values should be discarded.
After the first 500 steps, the plot shows regular oscillation around 3.
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Figure 4.3: A trace plot for a chain that appears to take small steps, so that it
does not explore the target distribution quickly. This is an indication of high
correlation among the samples, so in order to obtain independent samples
the chain must be run for a larger number of steps in order to accommodate
thinning the output by a larger factor.
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Figure 4.4: A trace plot that indicates a chain that is not mixing well. The
chain is exploring the target distribution extremely slowly. This chain is not
suitable for parameter inference.
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4.3.2 Yu and Mykland’s CUSUM Plot

The CUSUM plot is a way of monitoring convergence that can be applied

to any sampler. It is presented by Yu and Mykland (1998), and its primary

appeal is that it can be implemented through generic code that is independent

of the problem. For a sampler (Xt)
∞
t=0, we have output {x1, . . . ,xn} after the

chain has run for n steps. The initial iterations, say the first n0 of them, are

discarded. Let θ : Rm 7→ R be a scalar function of the parameters. Some

common functions of this type are θ(x) = x̄ and θ(x) = x(i), i ∈ {1, 2, . . . ,m}.

The construction of the CUSUM plot proceeds in the following way. First,

calculate

µ̂ =
1

n− n0

n∑
t=n0+1

θ(xt),

the mean of the values of θ that are not discarded. Next, calculate the partial

sum, termed the CUSUM or cumulative sum

ŜT =
T∑

t=n0+1

[
θ(xt)− µ̂

]
, for each T = n0 + 1 . . . , n.

Note that this is not the same as the CUSUM one would come across in the

quality control literature (Bissell, 1969). The process ends by plotting
{
ŜT

}
against T for each T ∈ {n0 + 1, . . . , n}, and connecting successive points with

line segments.

In the CUSUM plot, poor mixing is indicated by smoothness. If a chain

is mixing well, we will see a lot of “hairiness” in the plot, but the plot will

not necessarily show oscillation around a central value, as we see in the trace

plot. This is a highly subjective way to assess convergence, and Brooks (1996)
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presents a more objective method that relies on the CUSUM. The idea is that

a perfectly hairy plot will consist of line segments with alternating positive and

negative slopes. Brooks (1996) suggests the following as a measure of hairiness.

Define

dT =

{
1 if ST−1 < ST and ST+1 < ST or ST−1 > ST and ST+1 > ST

0 otherwise,

for all T = n0 + 1, . . . , n− 1. Then

Dn0,n =
1

n− n0

n−1∑
T=n0+1

dT

is a measure of the “hairiness” of the plot. Brooks (1996) shows that Dn0,n has

an asymptotic normal distribution with mean 1/2 and variance 1/[4(n− n0)].

A lack of convergence is indicated if Dn0,n falls outside of the bounds

1

2
± Zα/2

√
1

4(n− n0)
.

Note that if a large number of samples are taken after the first n0 are discarded,

this interval is very small, and this method will frequently indicate a lack of

convergence.

4.3.3 Geweke’s Spectral Density Diagnostic

The spectral density diagnostic of Geweke (1992) relies on a hypothesis test

for a difference in the mean values of a scalar function θ : Rm 7→ R over different

regions of the sequence of values from (Xt)
∞
t=0 that are not discarded. Let

θt = θ(xt+n0), where n0 is the number of initial iterations that are discarded.

Consider two subsequences {θt : t = 1, . . . , nA} and {θt : t = n∗, . . . , n}, where
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1 < nA < n∗ < n and nB = n− n∗ + 1. Next, define

θ̄A =
1

nA

nA∑
t=1

θt and θ̄B =
1

nB

n∑
t=n∗

θt,

the means of the θt values in each of the two regions of the sequence of n− n0

steps of the chain that are not discarded. In addition, let ŜAθ (0) and ŜBθ (0)

be estimates of the spectral density at frequency 0 for {θt : t = 1, . . . , nA} and

{θt : t = n∗, . . . , nB}. Geweke (1992) argues that if the ratio nA+nB
n

< 1 is fixed

and if the sequence {θt} is stationary, then

Zn =
θ̄A − θ̄B√

1
nA
ŜAθ (0) + 1

nB
ŜBθ (0)

D→ N(0, 1),

as n→∞. Therefore, if the sampler is approximately in its stationary distri-

bution, we will not reject the null hypothesis that there is no difference between

the means of the θ values in the two regions of the chain.

4.3.4 Gelman and Rubin Potential Scale Reduction Fac-
tor

Gelman and Rubin (1992) propose a method of convergence assessment

that relies on analyzing m independent chains. The process provides the basis

for an estimate of how close the chain is to the target distribution as well

as an estimate of how much we expect this estimate to improve with further

simulations. For integers m ≥ 2 and n > 0, independently simulate m ≥ 2

sequences of length 2n, each of which are started at different initial values that

are over-dispersed with respect to the stationary distribution. For a scalar
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summary statistic θ(·), we calculate

B =
1

m− 1

m∑
i=1

(θ̄.i − θ̄..)2,

where θ̄.i is the mean value of θ in the ith sequence and θ̄.. is the mean of the m

within-sequence averages. Next, calculate the mean W of the within-sequence

variances s2
i , and then calculate V̂ , the estimated variance of the stationary

distribution, as a weighted average of W and B:

V̂ =
n− 1

n
W +

1

n
B.

The diagnostic relies on the calculation of a potential scale reduction factor

(PSRF), which is a measure of the scale by which the posterior distribution of

θ will shrink as n gets large. This factor is given by

R̂ =
V̂

W
. (4.10)

A value of R̂ that is far from 1 is an indication of a lack of convergence.

4.3.5 Caveats of Output-Based Convergence
Assessment

Despite the benefits of simplicity and ease of implementation of the ad hoc

methods described above, such convergence assessment methods suffer from

several drawbacks. Perhaps the most important of these is that they cannot

determine that a chain is close to its stationary distribution. Instead, they

can only provide evidence of a lack of convergence. In addition, these methods

may require the researcher to run an MCMC algorithm for a long time just to

determine how many of the first iterations should be discarded. Some of the
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methods described above, such as the method of observing trace plots or the

CUSUM plot method, are very subjective. They require only visual inspection

of plots. These caveats of output-based convergence assessment highlight the

need for honest (Jones and Hobert, 2001) upper bounds on the mixing time,

where the word “honest” is taken to mean that an upper bound is developed in

a mathematically rigorous manner that is not based on the output of the chain.

The ability to obtain such upper bounds through verification of a drift and a

minorization condition provides a sense of how long to run the chain before

actually running it. Since this method relies on the Markov chain theory, there

is no inherent subjectivity, thus addressing the concerns described above.

In some cases, however, it may be impossible to verify a drift and/or a

minorization condition. In other cases, the drift and minorization conditions

may lead to an upper bound on the mixing time, but this bound may not

be very useful. In these cases, the output-based convergence assessments are

the only way to obtain helpful information about the convergence behavior of

our chain. In cases where honest upper bounds are both available and useful,

the output-based diagnostics can be used to provide a check on the work in

deriving an honest upper bound on the mixing time.

4.4 Illustrative Example

In this section, we provide an example that illustrates everything we dis-

cussed earlier in this chapter. We begin with a description of the specific RSM

algorithm, including the tree topology, the data set, and the prior and proposal
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densities. We then detail the establishment of the minorization condition, first

by way of the analytical method and then via the Monte Carlo method of

bounding ε. We also present the results of the Monte Carlo algorithms for es-

timating λ and bounding b, the parameters from the drift condition, and then

we provide the output from the convergence diagnostics described previously

for different summary statistics.
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Figure 4.5: The unrooted tree topology used in this example. The tips are
labelled 1 through 10, and the internal nodes are labelled 11 through 18. In
this example, we look at branch 1, which connects nodes 11 and 12, branch 6,
which connects nodes 2 and 14, and branch 16, which connects nodes 3 and
18.

In this example, we use an unrooted tree topology with 10 leaves. This

tree topology is pictured in Figure 4.5. Therefore, our chain (Wt)
∞
t=0 moves on

R2n−3 = R17. We use a fictitious set of DNA sequence data that has 10,000 sites

per sequence, 83.03% of which are constant. This is representative of a typical

data set, as in a normal set of DNA sequence data, between 60% and 90% of the
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sites are constant. To generate the data set, we first generate a set of log branch

lengths w from the prior density, which is the N17(−4.5117, 0.25I17) density.

This corresponds to a distribution of the branch length where between each

node of the tree, we expect 0.0126 substitutions per site on average, and the

expected number of substitutions per site has standard deviation 0.0063. The

increment density is the U [−0.33, 0.33] density, and we chose this increment

density because it gives an acceptance rate near 44%.

4.4.1 The Minorization Condition

Using the analytical method, we find that

ε ≥

(
1− e− 4

3
e−5.325

1 + 3e−
4
3
e−4.995

)170,000

= 3.839998× 10−474,026. (4.11)

The minorization condition is satisfied on C = [−4.995,−4.005]17, with the

N17(−4.5117, 0.25I17) density, truncated to the set [−4.665,−4.335]17, as the

density admitted by the minorizing measure. The lower bound on ε is very

small, so we estimate a lower bound on ε using the Monte Carlo method.

To implement the Monte Carlo method, choose 5, 000 starting points inside

C. From each of these 5, 000 starting points, run 1, 000 17-step chains. The

choices of 5, 000 and 1, 000 were made after experimentation with different

values and the discovery that larger numbers of starting points and larger

numbers of chains from each starting point gave only a small change in the

estimate of ε, while greatly increasing the computational cost. Proceeding as

described above, we get a Monte Carlo lower bound ε̂ equal to 8.09× 10−284.
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This algorithm was repeated 50 times in order to obtain an idea of a suitable

value of L. Once all the runs of the algorithm were complete, the smallest of

the 50 values of ε̂ was 2.73× 10−287. This led to the conclusion that L = 1010

is sufficiently conservative, and we obtain lower bound of ε̂ = 8.09× 10−294.

4.4.2 The Drift Condition

To formulate the estimates of the drift parameters, we use the drift function

V (w) = [p(w|D)]−0.05 . (4.12)

To estimate λ, begin by choosing 20, 000 points wk, k = 1, . . . , 20, 000 outside

of C. For each of these points, numerically calculate PV (wk)/V (wk). In the

numerical integration, we use interval width v = 0.02. Once PV (wk)/V (wk)

is obtained for each of the chosen points, we maximize over them and add the

standard error. This process yields λ̂ = 0.990777 as an estimate of λ.

Let V̂ (w) be defined as

[p̂(w|D)]−0.05 .

For the estimation of b, choose 5, 000 points wl, l = 1, . . . , 5, 000 inside C, and

from each point, we numerically calculate P̂ V̂ (wl)−λ̂V̂ (wl) as described above

for each wl, l = 1, . . . , 5000. We maximize over the selected points and add a

standard error to obtain an estimated upper bound on b of b̂ = 3.6443× 1040.

4.4.3 Results of the Output-Based Methods of Conver-
gence Assessment

We first present the trace plots for four summary statistics: w(1), w(6), w(16),

and w̄, the mean log branch length. We then present the CUSUM plots for the
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same four summary statistics. Finally, we present the Brooks (1996) CUSUM

diagnostic, the Geweke (1992) diagnostic, and the Gelman and Rubin (1992)

diagnostic results for each of the four summary statistics, as well as a brief

discussion. For each diagnostic except for the trace plots, the first 170, 000

iterations are discarded, and the output is thinned by a factor of 1,000, which

means that in the trace plot, only every 1,000th observation is plotted. This is

done because the RSM algorithm updates the log branch lengths one-at-a-time,

and each time the log branch length that is chosen to be updated is chosen

uniformly at random. This means that it is possible for a log branch length

to go a long time without being updated. Observing only every 1, 000th step

not only takes care of this concern, but also reduces autocorrelation among

the samples.

Trace Plots and Acceptance Rate

Figure 4.6 shows the trace plots for the four summary statistics listed above

over the first 1.7 million steps of the chain. The chain has been thinned

by a factor of 1, 000 because of the one-at-a-time updating scheme and the

dependence among the log branch lengths. We observe that the plots indicate

that the chain reaches its target distribution rather quickly. In each plot,

there is rapid oscillation around a central value, and this does not indicate any

problems with convergence. The acceptance rate is near the optimal rate, at

44.3%.
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Figure 4.6: Trace plots of different summary statistics over the first 1.7 million
steps of the chain. The summary statistics are w(1), w(6), w(16), and w̄. The
trace plots do not indicate any problems with convergence, as in each of them,
we see regular oscillation around a center value.
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CUSUM Plots
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Figure 4.7: CUSUM plots for the summary statistics w(1), w(6), w(16), and
w̄. The first 3.4 million steps of the chain are shown, with the first 170,000
steps discarded. The CUSUM plots show a lot of oscillation, and this does not
indicate any problems with convergence.

Figure 4.7 shows the CUSUM plots for w(1), w(6), w(16), and w̄. The chain is

run for 3.4 million steps, and the first 170,000 steps are discarded. The CUSUM

plots show a lot of hairiness, and this is not indicative of any concerns with

convergence.
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Brooks, Geweke, and Gelman and Rubin Diagnostics

Table 4.2: Results of Brooks, Geweke, and Gelman and Rubin Diagnostics

Summary Statistic Brooks CUSUM Geweke Zn Gelman/Rubin PSRF

w(1) 0.46183 -1.50531 1.00133
w(6) 0.46025 0.211402 1.000239
w(16) 0.45789 -0.46622 1.00129
w̄ 0.47585 -0.06847 1.00026

Table 4.2 shows the results of the Brooks (1996) CUSUM diagnostic, the

Geweke (1992) spectral density diagnostic, and the Gelman and Rubin (1992)

diagnostic. Each of the three diagnostics comes from running the chain an

additional 170,000 steps after the burn-in. For the Brooks (1996) diagnostic,

all the values are between 0.45789 and 0.47585. These are reasonably close to

1/2, but by the Brooks (1996) standard, they indicate a lack of convergence.

The bounds on the Dn0,n values for any summary statistic are 0.4976 and

0.5024, based on a 95% confidence interval. If the value of Dn0,n is between

these values, no lack of convergence is indicated. This highlights a major

concern with this convergence diagnostic. The chain may have, in fact, run

for an adequately large number of steps to allow approximate sampling from

the target density. However, if the number of steps the chain runs after the

first n0 is large, this method of convergence assessment will indicate a lack of

convergence where there may be none.

For the Geweke (1992) diagnostic, all of the values of Zn fall between −1.96
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and 1.96, and at a 5% significance level, we would not reject the hypothesis

that the mean values of the chosen summary statistic are the same in both

parts of the output sequence. This does not indicate a lack of convergence

after 170, 000 steps. With this diagnostic, we always have the concern that we

have not run the chain long enough. It may be the case that the chain stays

in one region for a long time, especially in cases where the posterior density

has several local maxima. This can can result in a premature indication that

there is no evidence of a lack of convergence.

For the Gelman and Rubin (1992) method, we ran 4 independent chains

from different starting points. What we see in the table is that for each of the

summary statistics, the PSRF is very close to 1. This indicates that as n gets

large, we do not expect the estimated posterior density to shrink very much,

and this indicates that the chain is close to its stationary distribution.

4.4.4 Discussion

The drift and minorization conditions provide values of λ, b, and ε that

indicate that the chain will take a very long time to become close to its sta-

tionary distribution. However, most of the diagnostics tell a different story.

The major issue we see in the theory-based approach to bounding the mixing

time is with ε. The value of ε is much too small to be useful in providing

an upper bound on the mixing time. However, there is hope that the lower

bound on ε can be improved. One approach is to find a larger small set, so

that the chain will visit the small set more frequently. To do this, it is nec-

essary to increase the size of the set of values to which the chain can move
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in one step, and this should result in faster mixing. Despite this concern, a

clear argument for the theory-based approach emerges from the results of the

convergence diagnostics. The fact that most of the convergence diagnostics fail

to indicate a lack of convergence does not mean that the chain has converged.

For instance, it is possible that the chain explores the state space slowly, so it

may stay in one region for long periods of time. If this is the case, it would

come as no surprise that the difference in the summary statistics in different

parts of the chain is small enough that the diagnostics do not find it significant.

4.5 The Behavior of the RSM Algorithm

With any problem in which MCMC methods are employed, it is useful to

perform simulations in a variety of situations in order to determine whether

the chain behaves as one expects. In this section, we explore the behavior of

the RSM algorithm under several scenarios. We begin with a look at how the

choice of a prior distribution impacts the behavior of the RSM algorithm. In

order to do this, we use four different prior distributions that have different

amounts of variability. We then investigate how the behavior of the sampler

differs with varying percentages of constant sites in data set. Next, we provide

a description of how the number of sites per sequence in the data set affects

how the algorithm behaves, and then we provide a brief discussion that ties

together the other three parts of this section and that provides insight into how

the behavior of the RSM algorithm in the illustrative example of Section 4.4
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compares with the behavior of similar chains that use different data sets and

prior distributions.

To carry out the investigations mentioned above, we examine the marginal

behavior of four summary statistics pertaining to the log branch lengths w.

We look at w(1), w(6), w(16), and w̄, the same summaries we examined in the

illustrative example. We observe trace plots and histograms for each summary,

and we mark the maximum likelihood estimates (MLEs) of each of those sum-

maries. In each simulation, the algorithm is run for 1.7 × 106 steps, and the

first 1.7 × 105 are discarded. We choose to discard the first 1.7 × 105 values

because after this number of iterations, the convergence diagnostics above did

not indicate any problems with convergence. We also thin the chain by a factor

of 340, so that the plots we provide show every 340th value of each summary,

and we do this because after 340 iterations, each component is expected to

have been updated 20 times. This helps to reduce the autocorrelation among

the states of the chain.

4.5.1 The Effect of the Prior Distribution on the Be-
havior of the RSM Algorithm

Here, we compare the behavior of four RSM algorithms for approximating

the posterior density of the branch lengths of a phylogenetic tree. The chains

we investigate in this subsection use the following prior densities: the 17-

dimensional double exponential density, where each log branch length has a

DE(−4.5, 0.25) prior distribution and and there is no correlation among the log

branch lengths, the N17(−4.5117, 0.25I17) density, the N(−4.5117, 4I17) density,

127



and an improper prior that has density 1 over all of R17. The working data set

in each of these four situations is a DNA sequence data set with 10,000 sites

per sequence, and for which 83.03% of the sites are constant.

Double Exponential Prior Distribution

The trace plots in Figure 4.8 show the output from a version of the RSM

algorithm that utilizes the DE17(−4.5117, 0.25117) prior distribution, and they

do not indicate any problems with convergence. The acceptance rate for the

RSM algorithm using the double exponential prior distribution is 44.94%,

which is not indicative of problems with mixing. The increment density for

each of the log branch lengths is the Uniform(-0.32, 0.32) density. In the plots,

we see the hairiness we desire, and the oscillation is centered near the MLEs

for each summary. The value of w(1) moves from approximately -4.3 to -3.5,

with centering around -3.9. The values of w(6) are centered around -4.2, and

the values of w(16) are oscillating around -4.45, which is closer to the MLE for

that summary than what we see in the plots of w(1) and w(6). The mean, as

expected, is more stable than the individual branch lengths, taking most of its

values between -4.6 and -4.55.

The histograms in Figure 4.9 show a clear shift from the prior distribu-

tion, indicating that the chain is pulling the values of these log branch lengths

toward regions of higher likelihood. This indicates that the likelihood is con-

trolling the posterior density, while the prior density has little effect.
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Figure 4.8: Trace plots of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, with
the first 1.7 × 105 discarded. The prior density for this RSM algorithm is
the DE17(−4.5117, 0.25117) density. 83.03% of the sites in the data set are
constant. A yellow line is drawn in each trace plot to indicate the MLE of the
corresponding summary for the log branch length vector.
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Figure 4.9: Histograms of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, where
the first 1.7× 105 have been discarded. The prior density for an individual log
branch length is the DE(−4.5, 0.25) density, and it has been overlaid in blue
on the histogram of each of the individual log branch lengths. 83.03% of the
sites in the data set are constant. A red vertical line is drawn in each histogram
to indicate the MLE of the corresponding summary for the log branch length
vector.
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Table 4.3: Posterior Mean and Standard Deviation of w(1), w(6), w(16), and w̄
with Double Exponential Prior

Posterior Mean Posterior Std. Dev. MLE

w(1) -3.91445 0.07232 -4.02708
w(6) -4.18433 0.08142 -4.27461
w(16) -4.42344 0.08379 -4.44184
w̄ -4.5730 0.02429 -4.58403

The posterior mean, posterior standard deviation, and the MLE of each

of the summaries are given in Table 4.3. From this, we see the same things

that are illustrated in Figure 4.9. Note that since we placed DE(−4.5, 0.25)

prior distribution on each log branch length, each log branch length has prior

variance 0.125, which is much larger than the variances we see in Table 4.3.

We also observe that, despite the appearance of the histograms and the trace

plots, none of the mean values are more than two standard deviations away

from the MLE of the log branch length.

N17(−4.5117, 0.25I17) Prior Distribution

Figure 4.10 shows trace plots of w(1), w(6), w(16), and w̄ for a version of the

RSM algorithm that uses the N(−4.5117, 0.25I17) density as the prior den-

sity. The trace plots do not indicate any problems with convergence, and the

acceptance rate for this algorithm is 44.39%. The increment density is the

Uniform(-0.34, 0.34) density. The trace plots show that the values of w(1)

oscillate around -3.9, the values of w(6) are centered around -4.2, and the val-

ues of w(16) oscillate around -4.4. The values of the mean log branch length
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are concentrated between -4.60 and -4.55. The individual log branch lengths

appear to center at values that are near the MLEs of the chosen log branch

lengths.

The histograms that correspond to the individual log branch lengths in Fig-

ure 4.11 are each centered at values that are near the MLEs. The histograms

show a shift from the prior density, and there is a great deal less variation

in the histogram than in the prior density. This indicates that the chain is

moving toward a region of high likelihood and staying there.
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Figure 4.10: Trace plots of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, with
the first 1.7 × 105 discarded. The prior density for this version of the RSM
algorithm is the N17(−4.5117, 0.25I17) density. 83.03% of the sites in the data
set are constant. A yellow line is drawn in each trace plot to indicate the MLE
of the corresponding summary for the log branch length vector.
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Figure 4.11: Histograms of w(1), w(6), w(16), and w̄ over 1.7× 106 steps, where
the first 1.7× 105 have been discarded. The prior density for an individual log
branch length is the N(−4.5, 0.25) density, and it has been overlaid in blue on
the histogram of each of the individual log branch lengths. 83.03% of the sites
in the data set are constant. A red vertical line is drawn in each histogram
to indicate the MLE of the corresponding summary for the log branch length
vector.
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Table 4.4: Posterior Mean and Standard Deviation of w(1), w(6), w(16), and w̄
with N17(−4.5117, 0.25I17) Prior

Posterior Mean Posterior Std. Dev. MLE

w(1) -3.90680 0.07280 -4.02708
w(6) -4.17039 0.08246 -4.27461
w(16) -4.40147 0.09017 -4.44184
w̄ -4.57853 0.02449 -4.584033

Table 4.4 gives the posterior mean and standard deviation of the four sum-

maries described Figures 4.10 and 4.11. We see similar things here to that

which we observed when the prior distribution was the double exponential.

We see that the posterior distribution is much less diffuse than the prior, and

that the empirical posterior distributions for each summary are centered no

more than two standard deviations away from the MLEs of the corresponding

log branch lengths.

N17(−4.5117, 4I17) Prior Density

Figure 4.12 shows trace plots of w(1), w(6), w(16), and w̄ from the version

of the RSM algorithm that uses the N17(−4.5117, 4I17) density as the prior

density. There appears to be the hairiness we require in order to conclude

that there is no evidence of a lack of convergence, and the acceptance rate of

42.35% does not indicate a problem with mixing. The increment density in this

situation for each log branch length is the Uniform(-0.37, 0.37) density. The

values of w(1) fall primarily between -3.95 and -3.8; for w(6) the values from the

chain fall mostly between -4.25 and -4.1. The values of w(16) lie mostly between
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-4.5 and -4.3. The trace plots indicate slightly less variability in the values of

the three individual log branch lengths we chose than there appeared to be in

the values of the same summaries from the version of the RSM algorithm that

uses the DE17(−4.5117, 0.25117) prior and the RSM algorithm which has the

N17(−4.5117, 0.25I17) density as the prior density. The values of the mean log

branch lengths fall primarily between -4.62 and -4.57, and the values of the

mean log branch length appear to be centered near the MLE of the mean log

branch length.

The histograms show that the individual log branch lengths are centered

at values that differ somewhat from the MLEs of the log branch lengths, while

the posterior distribution of the mean is centered near the MLE of the mean

log branch length. There is much less variation in the distributions of each of

the log branch lengths than there is in the prior density, and the distribution

of the log branch lengths shows a large shift from the prior density. This is an

indication that the likelihood is playing a dominant role in the determination

of the posterior density.
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Figure 4.12: Trace plots of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, with
the first 1.7× 105 discarded. The prior density for this RSM algorithm is the
N17(−4.5117, 4I17) density. 83.03% of the sites in the data set are constant. A
yellow line is drawn in each trace plot to indicate the MLE of the corresponding
summary for the log branch length vector.
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Figure 4.13: Histograms of w(1), w(6), w(16), and w̄ over 1.7× 106 steps, where
the first 1.7× 105 have been discarded. The prior density for an individual log
branch length is the N(−4.5, 4) density, and it has been overlaid in blue on
the histogram of each of the individual log branch lengths. 83.03% of the sites
in the data set are constant. A red vertical line is drawn in each histogram
to indicate the MLE of the corresponding summary for the log branch length
vector.
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Table 4.5: Posterior Mean and Standard Deviation of w(1), w(6), w(16), and w̄
with N17(−4.5117, 4I17) Prior

Posterior Mean Posterior Std. Dev. MLE

w(1) -3.89473 0.07148 -4.02708
w(6) -4.15857 0.07925 -4.27461
w(16) -4.40101 0.09138 -4.44184
w̄ -4.58926 0.02550 -4.58403

Table 4.5 shows the posterior mean and standard deviation of each of w(1),

w(6), w(16), and w̄. We see that, despite the fact that the variance of the prior

distribution is much larger than the variance of each of the other two prior

distributions used in this section, the empirical posterior mean and variance of

each summary is very similar to the posterior means and variances in each of

the previous two situations. This is an indication that the prior distribution

has very little effect on the posterior density.

Improper Prior With Density 1 Over R

The trace plots in Figure 4.14 show the values of w(1), w(6), w(16), and w̄

from the RSM algorithm which uses the constant, improper prior distribution

having density 1 over R17. The increment density for each of the log branch

lengths is the Uniform(-0.35, 0.35) density. The trace plots show rapid oscil-

lation around a central value, and this does not indicate any problems with

convergence. This algorithm has an acceptance rate of 44.25%. The values

of w(1) lie mostly between -4.0 and -3.8, the values of w(6) are concentrated

between -4.3 and -4.1, and the values of w(16) fall primarily between -4.5 and
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-4.3. The values of the mean log branch length lie mostly between -4.62 and -

4.57. The log branch lengths and the mean log branch length are each centered

around values that differ slightly from the MLEs of the log branch lengths and

the mean log branch length, respectively.

Figure 4.15 shows the marginal empirical distributions of each of the log

branch lengths and the mean log branch lengths. In this algorithm, the prior

is constant, so the likelihood is equivalent to the posterior density up to a

normalizing constant. There are small discrepancies between the actual values

of each of the summaries and where the histograms are centered, but these

discrepancies are not large enough to cause alarm.
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Figure 4.14: Trace plots of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, with
the first 1.7× 105 discarded. The prior density for this RSM algorithm is the
constant, improper prior which has density 1 over all of R. 83.03% of the
sites in the data set are constant. A yellow line is drawn in each trace plot
to indicate the MLE of the corresponding summary for the log branch length
vector.
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Figure 4.15: Histograms of w(1), w(6), w(16), and w̄ over 1.7× 106 steps, where
the first 1.7× 105 have been discarded. The prior density for each log branch
length is constant and improper with “density” 1 over R, and it has been
overlaid in blue on the histogram of each of the individual log branch lengths.
83.03% of the sites in the data set are constant. A red vertical line is drawn
in each histogram to indicate the MLE of the corresponding summary for the
log branch length vector.
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Table 4.6: Posterior Mean and Standard Deviation of w(1), w(6), w(16), and w̄
Improper Prior having Density 1 over R

Posterior Mean Posterior Std. Dev. MLE

w(1) -3.89491 0.07308 -4.02708
w(6) -4.16126 0.08006 -4.27461
w(16) -4.40085 0.0.9028 -4.44184
w̄ -4.59047 0.02530 -4.58403

Table 4.6 shows the empirical posterior mean and standard deviation of

each of the w(1), w(6), w(16) and w̄. We see that the posterior mean and

variance of each summary are similar to those under each of the previous three

prior distributions. Thus, the distance between the mean and actual value of

each summary is similar under each prior distribution. Since this improper

prior has no effect on the posterior distribution, this serves as an illustration

of how the likelihood is largely determining the posterior density in each of the

four situations described in this subsection.

We have examined RSM algorithms for inference of the log branch lengths

using four different prior distributions. The differences we see in the behavior

among the four algorithms are very slight. We have looked at prior densities

that have very little variability, and we have considered priors which have high,

and even infinite variability. For each version of the RSM algorithm, the trace

plots look very similar, and they center around similar values. The sets of

histograms look very similar, and the increment densities that produce a near-

optimal acceptance rate are also very similar among the four versions of the
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algorithm. The indication here is that the choice of the prior distribution does

not play a major part in determining the posterior density. The similarity in

the trace plots, histograms, and near-optimal increment densities, despite the

significant differences in the prior distribution in each version of the algorithm,

indicates that the posterior density is almost completely determined by the

likelihood. The similarity among the posterior means and variances of each

of the four summaries provides further evidence that the prior does not play

a significant role in the behavior of this version of the RSM algorithm. This

suggests that, in the situation where the tree topology is known, there is little

difference between branch length estimates that come from Bayesian inference

and those that come from maximum likelihood.

4.5.2 Effect of the Percentage of Constant Sites on the
Behavior of the Chain

Here, we take a look at how the behavior of the RSM algorithm changes

with varying percentages of constant sites in the data set. For each simulation,

we use the N17(−4.5117, 0.25I17) density as the prior density.

60.56% Constant Sites

The trace plots in Figure 4.16 show the values of w(1), w(6), w(16), and w̄

from the RSM algorithm with the N17(−4.5117, 0.25I17) density as the prior

density, and where the working data set has 10,000 sites per sequence. 60.56%

of these sites are constant. The increment density for each log branch length

in this version of the RSM algorithm is the Uniform(-0.225, 0.225) density.
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This choice of an increment density yields an acceptance rate of 43.95%. This

acceptance rate, combined with the hairiness in the trace plots, gives no indi-

cation of a lack of convergence. We see that most of the values of w(1) from

the RSM algorithm lie between -3.9 and -3.7. The chain gives values of w(6)

that mostly fall between -3.95 and -3.75, and the values of w(16) lie primarily

between -3.7 and -3.55. The mean log branch length is more stable than the

individual log branch lengths, and a large majority of the values of the mean

log branch length fall between -3.64 and -3.61. In each of the trace plots, we

see that the chain settles fairly close to the MLEs of the log branch lengths

and the mean log branch length.

The histograms in Figure 4.17 show marginal distributions of each of the

summaries. All of them differ greatly from the prior distribution in variability

and location. The estimated marginal distributions of each of the summary

statistics are centered at values that are near the MLE of each of the sum-

mary statistics. This provides evidence that the chain is moving toward values

with higher likelihood. This is expected, since in the previous subsection, we

observed the prominent role the likelihood plays in the determination of the

posterior density. With a higher percentage of non-constant sites, the expec-

tation is that the likelihood will play an even larger role in determining the

posterior density, sine there are more distinct site patterns.
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Figure 4.16: Trace plots of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, with
the first 1.7 × 105 discarded. The prior density for this RSM algorithm the
N(−4.5117, 0.25I17) density. 60.56% of the sites in the data set are constant. A
yellow line is drawn in each trace plot to indicate the MLE of the corresponding
summary for the log branch length vector.
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Figure 4.17: Histograms of w(1), w(6), w(16), and w̄ over 1.7× 106 steps, where
the first 1.7× 105 have been discarded. The prior density for each log branch
length is the N(−4.5, 0.25) density, and it has been overlaid in blue on the
histogram of each of the individual log branch lengths. 60.56% of the sites
in the data set are constant. A red vertical line is drawn in each histogram
to indicate the MLE of the corresponding summary for the log branch length
vector.

147



Table 4.7: Posterior Mean and Standard Deviation of w(1), w(6), w(16), and w̄
60.56% of Sites are Constant

Posterior Mean Posterior Std. Dev. MLE

w(1) -3.78154 0.07946 -3.62847
w(6) -3.86111 0.07225 -3.82404
w(16) -3.64256 0.06213 -3.66747
w̄ -3.62783 0.01549 -3.62349

Table 4.7 shows the empirical posterior mean and standard deviation of

w(1), w(6), w(16), and w̄ when 60.56% of the sites in the data set are constant

and the prior distribution is the N17(−4.5117, 0.25I17) distribution. We see

that the posterior means are larger than those in the four situations in the

previous subsection. This makes sense since there are more sites that are not

constant. Thus, we expect more substitutions per site. We see that each of the

summaries has a mean value that is roughly within two standard deviations of

the MLE of the log branch length, so although the empirical distributions of

each of these summaries is centered at a value that appears far from the MLE

of the summary, the difference is still not overly large in terms of the standard

deviation.

91.61% Constant Sites

Figure 4.18 shows trace plots of the values of w(1), w(6), w(16), and w̄ for the

version of the RSM algorithm that uses the N17(−4.5117, 0.25I17) prior density

and a data set with 10,000 sites per sequence, where 91.61% of the sites in the

data set are constant. For this version of the RSM algorithm, the increment
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density for each of the log branch lengths is the Uniform(-0.475, 0.475) density,

and the acceptance rate is 44.18%. The trace plots show that the values of w(1)

from the chain are mostly between -5.4 and -5.2, the values of w(6) mainly lie

between -5.6 and -5.3, and that the values of w(16) are concentrated between

-5.5 and -5.3. The mean log branch length has values that lie mostly between

-5.32 and -5.28. We observe that the values of w(1), w(6) and w(16) are centered

very close to the MLEs of the respective log branch lengths, while the mean

log branch length is centered at a value that differs somewhat from the MLE

of the mean log branch length.

The histograms in Figure 4.19 show that the estimated marginal distri-

butions of each of the summary statistics are far less diffuse than the prior

distribution. For w̄, the histogram is centered around a value that differs from

the MLE of the mean log branch length, while the histograms representing the

estimated marginal distributions of w(1), w(6) and w(16) are centered near the

respective MLEs of those summaries.
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Figure 4.18: Trace plots of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, with
the first 1.7 × 105 discarded. The prior density for this RSM algorithm the
N(−4.5117, 0.25I17) density. 91.61% of the sites in the data set are constant. A
yellow line is drawn in each trace plot to indicate the MLE of the corresponding
summary for the log branch length vector.
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Figure 4.19: Histograms of w(1), w(6), w(16), and w̄ over 1.7× 106 steps, where
the first 1.7× 105 have been discarded. The prior density for each log branch
length is the N(−4.5, 0.25) density, and it has been overlaid in blue on the
histogram of each of the individual log branch lengths. 91.61% of the sites
in the data set are constant. A red vertical line is drawn in each histogram
to indicate the MLE of the corresponding summary for the log branch length
vector.
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Table 4.8: Posterior Mean and Standard Deviation of w(1), w(6), w(16), and w̄
91.61% of Sites are Constant

Posterior Mean Posterior Std. Dev. MLE

w(1) -5.33702 0.14075 -5.24482
w(6) -5.44864 0.14612 -5.32798
w(16) -5.37539 0.13867 -5.35635
w̄ -5.29922 0.03347 -5.34645

Table 4.8 shows the empirical posterior mean and standard deviation of

w(1), w(6), w(16), and w̄ where 91.61% of the sites in the data set are constant

and the prior distribution is the N17(−4.5117, 0.25I17) distribution. The mean

values of each summary are smaller than those from the version of the RSM

algorithm that uses the data set with 60.56% of the sites are constant. This

is expected, since with 91.61% of the sites having no mutations, the expected

number of substitutions per sequence is smaller. Each of the summaries have

posterior mean values that are within two standard deviations of their MLEs.

In the two situations in this subsection, we see that with a higher percentage

of constant sites, we require an increment density that can propose larger

changes in the value of the parameter that is chosen to be incremented. We

observed in Section 4.5.1 the prior density has little effect on the posterior

density. The percentage of constant sites seems to play a slightly larger role

here, as is evidenced by the change in where the marginal distributions of the

summaries are centered with a higher percentage of constant sites.
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4.5.3 Effect of the Size of the Data Set on the Behavior
of the Chain

Here, we take a look at how the RSM algorithm behaves with data sets

of varying sizes. Both versions of the RSM algorithm discussed here use the

N17(−4.5117, 0.25I17) distribution as the prior density.

DNA Sequences with 1,000 Sites Apiece

The trace plots in Figure 4.20 show the values of w(1), w(6), w(16), and w̄

for a version of the RSM algorithm that uses the N17(−4.5117, 0.25I17) prior

density and a data set that consists of 10 1,000-site DNA sequences. 82.00%

of the sites in this data set are constant. The increment density for this chain

is the Uniform(-0.9, 0.9) density, and the acceptance rate is 44.86%. In the

trace plots, there are no indications of a lack of convergence. We also observe

that the values of w(1) that come from the RSM algorithm mostly fall between

-4.75 and -4.25, the values of w(6) mostly lie between -4.9 and -4.4, and most

of the values of w(16) fall between -4.4 and -3.9. The majority of the values of

the mean log branch lengths are between -4.65 and -4.45. Thus, we see that

with the smaller data set, the mean is still more stable than the individual log

branch lengths, and all four of the summary statistics are less stable than the

same summary statistics in the versions of the RSM algorithm that rely on the

10,000-site DNA sequence data set. We expect this, as variability in estimation

decreases with increasing sample size. We observe also that w(1), w(16), and w̄

are centered at values that differ from the MLEs of these summary statistics,

and that do so by more than do the values of the summaries for the version
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of the RSM algorithm that used a 10,000-site DNA sequence data set. The

values of w(6) from the RSM algorithm appear to be centered near the MLE

of w(6).

Figure 4.21 shows histograms for the four summary statistics. Here, we

see that, while the marginal distributions for the individual log branch lengths

are still less diffuse than the prior, they appear to resemble the prior density

more closely than do the marginal distributions of the same log branch lengths

in the chains that use the 10,000-site DNA sequence data sets. This is an

indication that the prior has a larger effect on the posterior density in this

situation than in the ones we discussed previously. This comes as no surprise,

as with a smaller data set, one expects the likelihood to have a smaller effect

on the posterior density.
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Figure 4.20: Trace plots of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, with
the first 1.7 × 105 discarded. The prior density for this version of the RSM
algorithm the N(−4.5117, 0.25I17) density. 82.00% of the sites in the data set
are constant. A yellow line is drawn in each trace plot to indicate the MLE of
the corresponding summary for the log branch length vector.
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Figure 4.21: Histograms of w(1), w(6), w(16), and w̄ over 1.7× 106 steps, where
the first 1.7× 105 have been discarded. The prior density for each log branch
length is the N(−4.5, 0.25) density, and it has been overlaid in blue on the
histogram of each of the individual log branch lengths. 82.00% of the sites
in the data set are constant. A red vertical line is drawn in each histogram
to indicate the MLE of the corresponding summary for the log branch length
vector.
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Table 4.9: Posterior Mean and Standard Deviation of w(1), w(6), w(16), and w̄–
1,000 Sites Per Sequence

Posterior Mean Posterior Std. Dev. MLE

w(1) -4.54331 0.27262 -4.30811
w(6) -4.62716 0.27776 -4.52030
w(16) -4.12636 0.22305 -3.85078
w̄ -4.56385 0.06550 -4.64505

Table 4.9 shows the empirical posterior mean and standard deviation of

w(1), w(6), w(16), and w̄ for a version of the RSM algorithm that uses a set

of 10 DNA sequences with 1,000 sites apiece and a N17(−4.5117, 0.25I17) prior

distribution for the log branch lengths. We see that the posterior mean of w(6)

is quite close to the MLE of w(6), but that the rest of the summaries have

means that are further away from their MLEs. We also note that the standard

deviation of each of the summaries are much higher than they have been in

previous situations. This is expected, since the data set here only has 1,000

sites per sequence, whereas the other situations used data sets with 10,000

sites per sequence. The mean value of each summary is within two standard

deviations of the MLE, so in terms of standard deviations, the distance between

the mean and the MLE of each summary is similar to that in each of the

previous situations.

DNA Sequences with 100,000 Sites Each

The trace plots in Figure 4.22 show the values of w(1), w(6), w(16) and w̄ for

a version of the RSM algorithm that uses a N17(−4.5117, 0.25I17) prior density
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and a data set that has 100,000 sites per DNA sequence. 80.934% of the sites

in the data set are constant. The increment density in this version of the

RSM sampler for each of the log branch lengths is the Uniform(-0.105, 0.105)

density. The acceptance rate is 44.46%. We observe that the majority of the

values of w(1) from the chain lie between -4.85 and -4.79, most of the output

values of w(6) fall between -4.65 and -4.60, and the values of w(16) lie mostly

between -4.56 and -4.50. The majority of the values of the mean log branch

length lie between -4.49 and -4.48. The output values of each summary appear

to be centered near the MLE.

The histograms in Figure 4.23 show the estimated marginal distributions

of each of the four summary statistics. Each of the marginal distributions

for the log branch lengths show much less variation than what is seen in the

overlaid prior density. The marginal distribution of each summary is centered

near the MLE. This is an indication that the likelihood is dominating the prior

distribution in the determination of the posterior density. In other words, the

posterior density is almost completely determined by the likelihood.
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Figure 4.22: Trace plots of w(1), w(6), w(16), and w̄ over 1.7 × 106 steps, with
the first 1.7× 105 discarded as burn-in. The prior density for this RSM algo-
rithm the N(−4.5117, 0.25I17) density. 80.934% of the sites in the data set are
constant. A yellow line is drawn in each trace plot to indicate the MLE of the
corresponding summary in the log branch length vector.
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Figure 4.23: Histograms of w(1), w(6), w(16), and w̄ over 1.7× 106 steps, where
the first 1.7× 105 have been discarded as burn-in. The prior density for each
log branch length is the N(−4.5, 0.25) density, and it has been overlaid in blue
on the histogram of each of the individual log branch lengths. 80.934% of the
sites in the data set are constant. A red vertical line is drawn in each histogram
to indicate the MLE of the corresponding summary in the log branch length
vector.
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Table 4.10: Posterior Mean and Standard Deviation of w(1), w(6), w(16), and
w̄–100,000 Sites Per Sequence

Posterior Mean Posterior Std. Dev. MLE

w(1) -4.80847 0.03619 -4.77362
w(6) -4.62558 0.03256 -4.61256
w(16) -4.53679 0.03050 -4.54161
w̄ -4.486388 0.00765 -4.48853

Table 4.10 gives the empirical posterior mean and standard deviation of

w(1), w(6), w(16), and w̄ for a version of the RSM algorithm that uses a data

set with 100,000 sites per sequence and a N17(−4.5117, 0.25I17) distribution as

the prior distribution of the log branch lengths. We observe that the mean

values of each summary are closer to the MLEs than what we saw in previous

situations. We see that the variability is much smaller in this situation than

it is in any of the other situations described above. This comes as no surprise,

since the data set is larger than it is in any of the other situations. Each of

the log branch lengths has a mean that is within one standard deviation of its

MLE, as is the mean log branch lengths. Thus, the log branch lengths appear

to be closer to their MLEs in terms of standard deviations as well.

4.5.4 Discussion

In the investigation described above, we observe that as the size of the

data set increases, the choice of the prior distribution becomes less important

in determining posterior density. This is not unexpected. If we have more

information about the taxa represented by the leaves of the tree, it should
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play a bigger role in the inference of the branch lengths. From a mathemat-

ical perspective, the number of factors in the likelihood calculation is equal

to the number of sites in the data set, whereas the number of factors in the

prior density is equal to the number of branches. In fact, in the priors we

chose, there is no dependence among the branches, so that all of the factors

in the prior density corresponding to log branch lengths that are not chosen

to be incremented cancel in the acceptance probability. Thus, there is only

one factor that comes from the prior, and there are many (100,000 in one of

our examples) factors that come from the likelihood in the calculation of the

acceptance ratio. It therefore comes as no surprise that as the data set gets

large, the prior density plays almost no role in determining the estimation of

the posterior distribution.

We observed that as the percentage of constant sites increases, the width

of the increment density must increase in order to maintain a desirable accep-

tance rate for the chain. This also comes as no surprise. If a higher percentage

of the sites in the data set are informative, then the RSM chain should be

settling in an area of high likelihood. This means that large moves should be

rejected frequently, as large moves can take the chain to a state that has small

likelihood. A chain that allows this often will suffer adverse effects in terms

of convergence, and will therefore be of little help in Bayesian inference of the

branch lengths.

The third key observation from the rest of this section is that with a larger

data set, the RSM algorithm tends to settle around values that are very close

162



to the MLEs of the parameters that need to be inferred. This makes intuitive

sense, as more data means less variation, so when the chain settles in an area

of high likelihood, the empirical distributions of the summaries should be near

the actual values of the summaries. We also note that for the data set with

1,000 sites, the increment density was the Uniform(-0.90, 0.90) density, for

10,000 sites it is the Uniform(-0.34, 0.34) density, and for the chain that used

the data set with 100,000 sites, the increment density is the Uniform(-0.105,

0.105) density. Note the decreasing diffuseness of the increment density as the

number of sites per sequence increases. This is a direct result of having more

information about the individuals represented at the leaves of the tree, and

the reason the increment density shrinks with more data is precisely the same

as the reason it shrinks when we have a lower percentage of constant sites.

The chain we used in the illustrative example strikes a good balance be-

tween inferential and computational performance. With a large data set, the

computation of the likelihood slows down, and when it needs to be done

many times, the difference in computational time can be very burdensome

in comparison to using a chain that performs well in terms of inference but

that uses a smaller data set. The summaries for the chain we used, with

a N17(−4.5117, 0.25I17) prior density and a 10,000-site-per-sequence data set

with 83.03% of the sites constant provides output that, for the summary statis-

tics we investigated, centers rather closely to their MLEs. In addition, there

is low variability in the estimated marginal distribution. Therefore, if ergodic
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averages are used to obtain Bayesian estimates of the branch lengths, the re-

sulting estimate will have low variance and low bias. The computing time for

running the chain in Section 4.4 is about one-third the computing time for

the chain that uses the data set with 100,000 sites. If one had to perform

this process many times, it is easy to see how the payoff of lower variability

may not be worth the tripled computation time. This is especially true in this

setting, since the decrease in variability is rather small, especially when viewed

in terms of the branch lengths instead of the log branch lengths.

4.6 Summary

In this chapter, we presented a lower bound on the minorization parameter

ε for the Markov chain associated with an RSM algorithm that is designed to

approximate the posterior distribution of the log branch lengths of a phyloge-

netic tree given a DNA sequence data set and a tree topology. The analytical

upper bound was extremely small, and thus would not be very helpful in pro-

viding an upper bound on the mixing time. In an effort to make the value of ε

more useful, we presented a Monte Carlo method for estimating a lower bound

on ε, and this gave a lower bound that, while still very small, is much tighter

than the one derived analytically. We also presented Monte Carlo methods for

estimating upper bounds on the drift parameters λ and b. We then illustrated

the use of these methods in a situation where the tree topology is unrooted

with 10 taxa, and we looked at some of the well-known convergence diagnos-

tics and found that only one of them indicated any problems with convergence
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for our chain. We closed with an investigation of how the algorithm behaves

with different prior distributions and different data sets and found that in this

setting, the choice of prior and the percentage of constant sites appear to have

little effect on the posterior distribution. The size of the data set appears to

have a significant effect on the variation in the posterior density. All plots

suggest that the multivariate normal distribution provides a good approxima-

tion to the posterior distribution. In this situation, there is little difference in

Bayesian inference and maximum likelihood estimation. In situations where

the tree topology is not known, maximum likelihood estimation requires a

search through all possible tree topologies. Bayesian inference requires a sim-

ilar type of search, but because the posterior distribution is a distribution of

the parameters and not of the data, we can use it to form credible sets of

trees, including the tree topology. This is a benefit that we do not get from

maximum likelihood estimation.
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Chapter 5: Conclusion

The work detailed in the preceding pages describes methods of bounding

the mixing time for Markov chain Monte Carlo methods that are used in the

inference of the parameters of a phylogenetic tree. We dealt with the tree

topology and the branch lengths separately. We provided useful upper bounds

on the mixing time of two Markov chains that explore the space of rooted

phylogenetic tree topologies. We then verified geometric ergodicity of a ran-

dom scan Metropolis sampler that can be used to infer the branch lengths of

a phylogenetic tree with a known tree topology. Once we verified geometric

ergodicity, we provided an analytical method for establishment of a minoriza-

tion condition. This gave a value of ε that is too small to be of any use in

bounding the mixing time of the RSM sampler. We attempted to combat this

problem through computational methods that are designed to estimate a lower

bound on ε and to estimate upper bounds on λ and b, the parameters in the

drift condition. We then gave a description of several of the ad hoc conver-

gence assessment methods, and we provided an example that demonstrates the

analytical minorization condition, the computational methods of establishing
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minorization and drift conditions, and also shows the results of several output-

based convergence assessment methods for our sampler. We closed with an

investigation into the behavior of the RSM algorithm when different priors on

the log branch lengths are used. In addition, we described how the behav-

ior of the sampler changes when the percentage of constant sites in the data

set changes, and when the number of sites in the data set changes while the

percentage of constant sites is held steady.

5.1 Summary and Discussion of Results

In Chapter 2, we provided an upper bound of O(n
5
2 ) on the relaxation time

of a Markov chain that moves about Tn via SPR transitions. We also showed

that a Markov chain that explores Tn via NNI moves has relaxation time that is

no larger than O(n4). For the RSM sampler for inference of the branch lengths,

we verified a minorization and a drift condition through computational meth-

ods. While the lower bound on ε that came out of the computational method is

a significant improvement over the value of ε that we obtained analytically, it

is still too small to be very helpful in terms of providing a useful upper bound

on the mixing time of the RSM sampler.

The establishment of a minorization condition and an associated drift con-

dition represents a significant step forward in the pursuit of an “honest” upper

bound on the mixing time of a RSM sampler for inference of the branch lengths

of a known phylogenetic tree shape. To our knowledge, there has been no es-

tablishment of drift and minorization conditions for MCMC algorithms in this
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setting. The methods outlined in Cowles and Rosenthal (1998) are applicable

in very general settings, but for a chain that explores a state space with a

large number of dimensions, the Monte Carlo method proposed by Cowles and

Rosenthal (1998) for estimating ε is computationally infeasible. The method

we presented is quite useful in situations where a minorizing measure is avail-

able, but the establishment of a lower bound on ε is intractable, or analytical

methods fail to provide a lower bound on ε that is helpful in bounding the

mixing time.

Despite the concerns regarding the usefulness of ε̂, λ̂, and b̂, we are opti-

mistic that these estimates can be improved enough to aid in giving a useful

upper bound on the mixing time. Though we detailed many of the criticisms of

the output-based convergence assessment methods, the fact that they do not

seem to indicate that there are any issues with convergence after 170, 000 steps

is very encouraging. If the chain is, in fact, near convergence after 170, 000

steps, we believe that we can improve our estimates and use them to provide

an upper bound on the mixing time that more closely reflects this.

In the work presented in Chapter 4, we dealt only with inference of the

branch lengths, while assuming the tree topology is known. The reader may

have difficulty seeing the benefit of the Bayesian methodology in this setting.

We concede this point, as other methods, especially maximum likelihood, are

computationally much more efficient when the tree topology is known. How-

ever, it is important to note that this work is intended to provide insight into

how we can approach Bayesian inference for the setting in which the topology
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is not known. It is in this situation that the computational benefit of Bayesian

analysis is seen, even with large data sets and complex evolutionary models.

5.2 Future Work

Several ideas come to mind when it comes to directions for future work,

but there are two that are immediately to follow the completion of the work

presented here. The next step of this research is improve the bounds on the

drift and the minorization parameters. One possible way to do this is to find

a small set C that is larger than the one we used. With a larger small set, the

chain will have to enter C more frequently to ensure geometric convergence,

thus increasing the value of ε. Consideration of a different drift function may

aid in our making a better choice of C. We would want to choose a function

that is inversely proportional to the target density, but that is analytically

and/or computationally tractable. Analytical tractability is a characteristic

that is lacking of the drift function we chose. Another possibility is to increase

the size of the set of possible moves for the chain in order to improve mixing.

This may also take care of increasing the size of the small set.

Next, our goal is to provide an honest upper bound on the mixing time of

a MCMC algorithm for Bayesian inference of phylogenetic trees. The idea is

to find a combination of the two types of chains discussed in this dissertation

to develop a reliable and efficient method of Bayesian phylogenetic inference.

We have considered an RSM algorithm in which the log branch lengths are

updated as before, and if the tree shape parameter is the parameter that is
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chosen to be updated, we propose an SPR move in which a leaf is chosen at

random, removed, and reattached to a randomly chosen branch of the tree.

The removal of the assumption of a known tree shape has added a great deal

of difficulty to the problem of verifying drift and minorization conditions, as

the state space now has both discrete and continuous components. It is pos-

sible that in this setting, the RSM algorithm may perform poorly, so we are

not committed to using it as our MCMC method for inferring phylogenetic

trees. We do believe, however, that because of the high level of dependence

among the branch lengths, a one-at-a-time updating scheme is preferable to

an all-at-once updating method.

A third question is that of whether or not our model for likelihood calcu-

lation is based on a plausible representation of reality. Recall that we assume

that evolution between sites in a set of DNA sequences is independent, and

that we assume that evolution among lineages is independent. These are likely

poor assumptions. It may be better to consider the idea that sites that are less

distant from each other are likely to be more closely related in an evolutionary

sense than are sites that are more distant. This indicates a spatial depen-

dence among the sites. The same reasoning can be applied to the lineages.

Therefore, it would be helpful to incorporate the spatial dependence into the

likelihood calculation while still allowing efficient likelihood calculation. We

recognize, however, that incorporating spatial dependence makes an already

complex function much more complicated, and that achieving both parts of
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this goal is a rather tall order.

In addition to extending the research described in this dissertation, there

are opportunities for new directions. For instance, a common concern is the

computational inefficiency of sampling from complex, high dimensional dis-

tributions. A distribution that comes up frequently in many settings is the

m-variate truncated normal density. We want to sample a vector X from

a normal distribution whose support is truncated to a set in which for each

i ∈ {1, . . . ,m}, Xi ∈ [−ηi, ηi]. This problem has been addressed in many set-

tings where the covariance matrix Σ is assumed to be of the form Σ = cIm,

for some constant c > 0. In the problem we plan to address,

Σij = cρ|i−j|,

where ρ ∈ (0, 1). The mean vector is an m-dimensional vector µ. An ap-

proach that shows promise is the polar slice sampler, introduced by Roberts

and Rosenthal (2002). Provided the density from which sampling is to occur

is log-concave, the polar slice sampler has been shown to have convergence

properties that are independent of the dimension of the problem.
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