Random Number Generation in Parallel

David Spade

Department of Statistics
The Ohio State University

Friday, April 6, 2012
Methods of Random Number Generation

I cover three methods of Random Number Generation here.

- Multiple Recursive Generator (MRG32k3a)
- Sobol Quasi-Random Number Generator
- Mersenne Twister (MT19937)
In each of the three methods:

- Each generator has a state Y_n, which has one or more variables, that can be advanced by some algorithm $Y_{n+1} = f(Y_n)$ from some initial value Y_0.
- There is an output process $x_n = g(Y_n)$ that generates an approximate Uniform[0,1) random number x_n.
- Parallelization is facilitated by a "skip ahead" strategy, where each RNG can skip ahead a given number p of steps, so that $Y_{n+p} = f_p(Y_n)$.
Three Skip Ahead Strategies

Simple Skip Ahead

- Performed at the thread level
- Each thread in each block skips ahead to a specified point in RNG sequence, and then a contiguous segment of points are generated on each thread.
- Skips are chosen so that segments are adjacent and do not overlap.
Three Skip Ahead Strategies (cont.)

Strided (leap-frog)
- Performed at thread level
- n^{th} thread out of N generates points $n, n + N, n + 2N$, etc.
Hybrid

- Performed at the block level
- In each block, each thread does strided generation.
L’Ecuyer’s Multiple Recursive Generator (MRG32k3a)

MRG32k3a is defined by the following set of equations:

\[y_{1,n} = (a_{12}y_{1,n-2} + a_{13}y_{1,n-3}) \mod m_1 \]
\[y_{2,n} = (a_{21}y_{2,n-1} + a_{23}y_{2,n-3}) \mod m_2 \]
\[x_n = (y_{1,n} + y_{2,n}) \mod m_1, \]

where \(a_{12} = 1403580, a_{21} = 527612, a_{13} = -810728, a_{23} = -1370589, m_1 = 2^{32} - 209, m_2 = 2^{32} - 22853, n \geq 3, \) and \(x_3, x_4, x_5, \ldots \) are outputs of the generator. Dividing the outputs by \(m_1 \) gives pseudo-random Uniform\([0,1)\) outputs.
L’Ecuyer’s Multiple Recursive Generator (MRG32k3a)

Representation of States:

- At any point in the sequence, a state can be represented by the pair of vectors \(Y_{i,n} = (y_{i,n}, y_{i,n-1}, y_{i,n-2})^T, \ i=1,2. \)
- The recursion above yields that \(Y_{i,n+1} = A_i \, Y_{i,n} \mod m_i, \ i = 1, 2, \) where \(A_i \) is a \(3 \times 3 \) matrix.
- To skip ahead \(p \) steps, \(Y_{i,n+p} = A_i^p \, Y_{i,n} \mod m_i, \ i = 1, 2. \)

Since the state is small, the simple skip ahead strategy works well for CUDA implementation, provided one has an efficient method of calculating \(A_i^p. \)
Advantages/Disadvantages of MRG32k3a

Advantages:
- Very straightforward and easy to parallelize
- To generate random numbers, a kernel can be launched with any configuration of threads and blocks since parallelization is done at the thread level.

Disadvantage: If it is desired to improve the speed, then there is a substantial amount of memory sacrifice in doing so.
Sobol Generation

Begin with a sequence of k-bit integers, where 2^k represents the length of the sequence to be generated.

Starting with $y_0 = 0$, y_1, y_2, \ldots are computed by the formula

$$y_n = g_1 m_1 \oplus g_2 m_2 \oplus \ldots \oplus g_k m_k$$
$$= y_{n-1} \oplus m_f(n-1),$$

where:
Notation for Sobol Generation

- g_i are bits in binary representation of $n \oplus \left\lceil \frac{n}{2} \right\rceil$, so that $n \oplus \left\lceil \frac{n}{2} \right\rceil = g_k \cdots g_2 g_1$.
- $f(n)$ returns index of rightmost zero bit in binary representation of n.
- To get the Sobol sequence x_1, x_2, \ldots, set $x_n = 2^{-k} y_n$.
- \oplus is the binary exclusive or operator.
- Simple skip ahead is quite fast for running this in parallel. A strided algorithm is a bit faster.
Advantages and Disadvantages of Sobol Generation

Advantages:

- In the parallelization, the skip ahead algorithm is very fast, since it only requires a loop with k iterations.
- Also lends itself to a very fast algorithm for strided generation
- Has good multidimensional uniformity and statistical properties.

Disadvantages:

- If it is desired to generate multidimensional Sobol sequences, then one must be very careful in his or her choice of the m_i numbers, since poor choices can destroy the multidimensional uniformity properties that are at the heart of the method.
The state of the generator is a vector, but the algorithm converts this vector to a pseudo-random number.

- Algorithm is based on the following linear recurrence:

\[X_{k+N} = X_{k+M} \oplus (X^u_k|X^l_{k+1})D \forall k \geq 0, \]

where \(M \) and \(N \) are fixed natural numbers, \(X_i \) is represented by a \(w \) bit string of 0s and 1s, \((X^u_k|X^l_{k+1}) \) is the concatenation of the \(w - r \) most significant bits of \(X_k \) and the \(r \) least significant bits of \(X_{k+1} \) for some natural number \(r \leq w \).

- \(D \) is a \(w \times w \) matrix of 0s and 1s.

- The matrix multiplication in the recurrence relation is performed modulo 2.
The popular Mersenne Twister algorithm:

- $w = 32$, $N = 624$, $M = 397$, $r = 31$, $d_{31}d_{30}\ldots d_1$, which is the last row of the D matrix, is equal to 2567483615.
- The period of the generator is $2^{19937} - 1$.
- The state vector Y_k has 19937 individual bits, which are stored as 632 32 bit words with one bit left over. Y_k is represented as

$$Y_k = (X_{N-1+k}, X_{N-2+k}, \ldots, X_k)$$
Y₀ is the initial seed for the generator.

If Yᵦ is regarded as a list of individual bits and is read from top to bottom, the first 19937 are used and the last 31 are ignored.

The ignored bits are the 31 least significant bits of Xᵦ.

Let A be a 1 × 19937 matrix. When the generator is considered as a list of individual bits, Yᵦ₊₁ = AYᵦ, and Yᵦ = AᵏY₀, where matrix multiplication is performed mod 2.

Parallelization is somewhat difficult here, and requires a hybrid method.
Advantages and Disadvantages of the Mersenne Twister

Advantages:
- Good multidimensional uniformity and statistical properties
- Very fast compared to other algorithms, so it is useful in simulations where huge quantities of random numbers are required.

Disadvantages:
- The size of the states rules out thread-level parallelization.
Discussed three methods of implementing RNGs in CUDA.
Discussed three random number generators.
I mentioned, in a broad sense, the method used to implement the RNGs in CUDA.
For further details on the parallelization of these three RNGs, see the Bradley et al paper posted on Radu’s GPU computing website.