Introduction and Overview
STAT 421, SP 2012

Prof. Prem K. Goel
Mon, Wed, Fri 3:30PM-4:48PM
Postle Hall 1180

Course Instructor

Prof. Goel, Prem

E-mail: goel.1@osu.edu
Office: CH 204C (Cockins Hall)
Phone: 614-292-8110

Office Hours:

— Tuesday 2:00 PM - 3:00 PM

— Wednesday 1:30 PM - 2:30 PM
— Friday 10:00 AM -11:00 AM

Other times by appointment
Course Website: www.stat.osu.edu/~goel/

Relevant course material will be posted on this website by
8:00PM day before the class
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Recitation Instructors and Graders

* Ms. Siyoen Kil
* Office: 304C Cockins Hall

e E-Mail: kil.3@osu.edu

= Th 11:30AM - 12:18PM
Caldwell Lab 0277

= Th 12:30PM —-01:18PM
Dreese Lab 0369

* Office Hours: TBD

e Ms. Lira Pi
* Office: 304F Cockins Hall
e E-mail: pi.5@osu.edu

= Th 10:30AM - 11:18AM
Dreese Lab 0317

= Th 12:30PM - 01:18PM
Univ. Hall 0151

= Office Hours: Tuesdays,
10:00 AM -12:00 Noon

Student Information Needed

Name: Last, First

Signature

— For matching with attendance sign-up sheet

* Major

Math Courses Background
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Probability and Statistics

e Why study
— Statistics
* Science of Decision Making Under Uncertainty
» Understanding Variability
» Explaining Variability
0 E.g., assigning most likely causes to breakdowns (Challenger Shuttle)
¢ Almost every discipline depends on quantitative evidence
¢ All of us need to understand and analyze this evidence
— Probability
¢ Formal Language for Statistical Reasoning
¢ Basic Rules of Probability Calculus
¢ How to assign probabilities to various outcomes (collection of outcomes - EVENT) of
interest
* How to interpret the probability of an event
¢ You Learned it in Stat 420 ( Critical Prerequisite)
— Key topics you need to review this week
— Various Distributions — Chapter 5, 6, and Appendices B, C
— Sampling Variability and Sampling Distributions — Chapter 8

Why Study Uncertainty

e Almost nothing in nature is deterministic
* Variability in Outcomes when an experiment is
performed repeatedly
— Unit to unit
— Person to person
— DNA to DNA
— Natural objects
— Games of Chance

— Deterministic problem — but measurement errors may
lead to variability in repeated outcomes
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Uncertainty and Variation: Simple
Examples

» Does each insured client have an accident during
a given year?

* If you kick a football several times, will the
distance the ball traveled be the same?
— We can’t necessarily predict who will have an accident

in a given year or predict the distance the ball will
travel for any particular kick.

* However, lots of the time, data will follow a
general pattern.

— From this pattern, we can get an idea of the expected
(most likely) number of claims or the distance the
football will travel.

Applications of Statistics and

Probability
Gambling — Engineering —
what are the odds? designing/testing products
Medicine & Biology — Business —

drug development/ genomics,  advertising/marketing

Manufacturing — Insurance —
process/quality control Actuarial estimates
Economics and Politics — Law — DNA matching

Predicting unemployment
rates/Opinion polls
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Probability and Statistics

® The study of randomness and uncertainty

® “Chances”, “odds”, “likelihood”, “expected”, “probably”, “on average”, ...

PROBABILITY

I.
Population ‘ Sample
pulat -‘Q

INFERENTIAL STATISTICS

Quick Review: Stat 420
Probability Concepts

Text Book:
Chapters 5, 6, and 8
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Discrete Distributions

Bernoulli(p) pt(1—p)=* r=0,1 P p(1—p)
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Pois(\) e r=012.. A A

!

rj [N—rj
X
Hypergeometric p(x_x)_[x n=X)  x=max{0,n—(N =r)},--,min{n,r}

N
(n] E(X)=np, wherep=r/N.
Var(X) = fpc-n-p(1-p)

-1
P(X = x)=(:_lj(l— P p" L x=rrl, ...

EX)=L V(X)=
P

Negative Binomial
rd-p)
p2

Chapter 5 11

Before the Normal Distribution

Normal Distribution — Bell Curve N(y, 62)

e Continuous distribution, defined on entire real line (allows positive
density on negative numbers, even though it may be negligible)

e  Symmetric

We may want to study a phenomena that has a skewed distribution? [For
example taking all values in (0,00)

¢ Income and Consumption [Economics, Management]

¢ Time until the next “hit” on a web page [Web Data Mining]
e Response time to a stimulus [Psychology]

e Pay-off for car-insurance policy [Insurance]

e Time to Event [Insurance]

¢ Lifetime of a component of a device [reliability studies]

¢ Inter-arrival times of events [Transportation, Reliability, Queuing]
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Gamma, Exponential and y2 Distributions

e A flexible “family” of distributions used to model these phenomena
e The family can represent a large variety of shapes

Gamma Distribution: X ~Gamma(e, f)

Flexible, two-parameter family of distributions.

Special Cases:
Exponential Distribution: X ~ Exp(f)

Chi-Squared Distribution: X ~ 2,

Section 6.3

Gamma Distribution

Def: A continuous RV X is said to have a gamma distribution with
parameters o >0 and £> 0 if the pdf of X is

1 a—1 —l’/ﬁ > ()
i@’ ¢ T
[x(z|o, B) =

flx; e, B) flxa)
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(x| %)

Exponential Distribution
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Def: A continuous RV X follows an exponential distribution with
parameter A > 0 if X has pdf

e M 2 >0
fx(z|\) =

010 045 020 035
I I I I

0.05
I

0.00
I

Chi-Squared Distribution

The Chi-Squared distribution : A special case of the Gamma distribution
when o =v /2 (for some positive integer v) and B = 2.

The parameter v is called the “degrees of freedom”.

Lwi)-1—=/2 >0

otherwise

2 1
X~xy i u)z{ FEEP)

e Used for statistical inference on sampling distribution of
Sample Variance of observations from a Normal
Population




The Normal (Gaussian) Distribution

Notation: X ~ N(Ma 02) ~ short hand for (is distributed as)

Probability density function (pdf):

1 ()2
flemo?) = o= e 2
2mo
M
1}
|II E I'u
/ 1\
B ey VA ("
e | . 71N
— i — = i ——
n I
Section 6.5

17

The Standard Normal Distribution

Special case: p=0and 62=1 (Standardized Scores)

o(2) = F(z:0,1) = \/%6‘22/2

Z ~ N(0,1)

—00 27 e Can not be expressed in
closed functional form!
¢ USE Tables or Numerical
z Integration to evaluate this

— ¢(’LU) dw Integral
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Standard Normal Distribution CDF

Table Il provides values of area under the curve from 0 to z, for z=0(.01)
3.09,and z=4.0,5.0,6.0

For, negative values of z, use the symmetry of the standard normal pdf.

19

Transforming (Standardizing) Normal RV’s

Idea: Transform a N(, %) RV into a N(0, 1) RV...
X ~N(p,0%)  then: W=X—-pu ~ N0,o%)

X —p

7 =

~ N(0,1)

04

a1

oo

10 =] o 5 10

20
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Using the Transformation
Say X ~ N(,u, az)and we want to compute P(a <X < b)

Idea: Transform to the standard normal distribution:

Pla<x<p) = p(izteXonm _bom)
\ O o o )

21

Sampling Distributions

= Select a random sample of n observations from a
specified population
® Independent & identically distributed (i.i.d.) random vars
» These arise in a variety of experimental situations.
= Sampling distribution of a statistic:

= Given repeated samples, the value of the statistic (e.g.
sample mean) varies from sample to sample. The Sampling
Distribution describes the pattern of variability in the values
over all possible samples of a fixed size.

Chapter 8, Section 8.1

3/25/2012
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Sampling Distributions - 2

* |f we know the underlying population
distribution f, we can obtain the EXACT
SAMPLING distribution of the sum (or,
average)

e Sometimes, it is not easy to find this
distribution analytically. Approximations via
— Monte Carlo simulations

— Large sample limiting distribution

Sampling Distribution of the Sample Mean

We will focus on the probability distribution of Yn in
two situations:

1. X; ~ N(p, o) “No approximation needed.”

2. X/s have an arbitrary (but same) underlying probability
distribution For large sample size, use “Limit distribution ”:
n— o
« In statistical inference problems, f is usually unknown.
For large n, we are able to approximate this sampling
distribution without knowing f
Modes of convergence of Sample Mean

24
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Situation 1: Sample from a Normal population
iid 2 .
X~ N(u,0%), i=1,...,n

In this case: X, ~ N(p, 0'2/7’L)

/ 7]0 distribution
/ 7,1 distribution

P X; distribution

25

Convergence for Large Sample Size

Example: Toss a coin a large number of, say n,
times. How does one formalize the phrase
Proportion of heads is ~ %5?

Suppose that . %2 is a sequence of independent
Bernoulli trials, each with probability of success
p. Then E(X) = p.

The proportion of successes in n trials =%.- >3z

This sequence is random, in that over repeated
trials, the sequence will takes different values.

However, as n gets large, it does converge in
some well defined sense.

3/25/2012
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Modes of Convergence

= Law of Large Numbers (LLN)
* Convergence in Probability
— Used in studying Consistency of estimators
= Convergence in Distribution
* Central Limit Theorem

* Normal and Poisson Approximations for Binomial
distribution

Law of Large Numbers

* Theorem: Letx.x,.-- be a sequence of independent
random variables, with zx)=urarcx)= . Let £,-150,x.
Then for any &>o,
F(|)?R—u|>€)90, asn —> o,
We say that the sequence of random variables X, converges
in probability to the number # or Z,——nu
Proof: Uses Chebyshev’s Inequality
¢ Repeated Measurements (Random Sampling): More generally,
for any function Y = g(X), such that mean and variance of Y
exist, sample mean ?:lzj=lg(;r,), of Y= g(X;), i=1,2,...,n,
n
converges in probability to E[Y].

3/25/2012
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Why do we need to look beyond LLN?

e LLN implies that one can estimate population mean and
second moment quite well from a sample of n independent
draws, if n is reasonably large.

* The chance that error in sample mean beyond any specified
threshold get smaller and smaller as n increases.

¢ However, it does not allow us to assess the size of error,
when one uses sample average to estimate the population
mean.
— If we want to approximate probability of a given size of error, we
need to zoom into these errors on a more and more micro-scale
¢, that goes to zero as n gets large. i
— Thus we consider a normalized quantity Uﬁ"ﬂ—”” , whose
distribution, f,, does not degenerate to zero.

Convergence of means of a random sample of n
observations: Central Limit Theorem

Second Case:

X1,..., X, are iid with mean p and variance o2

We want to understand how the error { ¥, -« }fluctuates around
zero over repeated sampling.

When n is sufficiently large, we say

X, is approximately distributed as N(u,02/n).

In what sense? Consider the standardized random variable
7 X S, —nu

" (ol e

* Note that E[Z,]=0, Var[Z,] = 1.

30
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Insight on CLT

e The CLT asserts that the cdf of Z, converges4p,
the cdf of a standard normal random variable
Z for all real numbers, so we can approximate

® PZ,2z)=0(2).

e The proof in the book is under more restrictive
conditions assuming that X.’s have same
distribution, and its mgf exists. But this is not
necessary. CLT holds under very general
conditions.

[llustrations

X distribution for
large n (approximately normal)
X distribution for
small to moderate n

Population \ /
distribution ~

£ 3007 Thomsen Higher Education

32
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Summary Statistics for 500 Repeated Samples
of Averages of Various Sample Sizes

¢ Underlying Population: Bernoulli (p=.75)

n=1 n=2 n=10 n=25 n=50
Dﬁ ,,,,,,,,,,,,, ﬁ ] = ] e
n=100 n=250 n=1000 n=1600 n=2500
i E = E s i s
I

33

Sum of n Throws for a six sided fair die
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Sample Means from Gamma
Distributed Random Variable

e X~ Gamma (a=0.75, 3 =0.5)
e The population pdf is sketched below:

Gamma Density

il

*
*

g, ‘L
1
o i
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Sampling distribution of the average

n =100

36
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X1,..., Xy are iid with mean p and variance o°.

Central Limit Theorem for Totals

2

n
Define the sum of these n random variables: T}, = Z X;
=1

approx.

When n is sufficiently large, Tn ~ N(“,u, n0—2>

37
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