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A Long Time Ago In A Galaxy Far Far Away....

Classification And Regression Trees!
by: Leo S. Breiman

1928–2005
(and others...)



CART: Classification And Regression Trees

F Leo Breiman, Jerome H. Friedman, Richard A. Olshen and Charles J. Stone, “Classification and Regression

Trees”, Wadsworth International Group, 1984.

Problem: Simple regression models often don’t work well with
complicated real-world data

Idea: Fit simple regression models to different regions of
covariate space to get a good overall fit to the data

Solution: Partition the covariate space to fit the different
models using a binary classification tree.

How: Partitions try to increase fit to data subject to a
complexity constraint. Bayesian in flavor, but in a fairly
ad-hoc manner



CART: Classification And Regression Trees

Here, each µi ≡ µi (x) can be a unique regression function.
But, we only get 1 tree...



Bayesian CART

F Hugh A. Chipman, Edward I. George, and Robert E. McCulloch, “Bayesian cart model search”, Journal of the
American Statistical Association, vol.93, pp.935-960, 1998.
F Hugh A. Chipman, Edward I. George, and Robert E. McCulloch, “Hierarchical priors for bayesian cart
shrinkage”, Statistics and Computing, vol.10, pp.17-24, 2000.
F Hugh A. Chipman, Edward I. George, and Robert E. McCulloch, “Bayesian treed models”, Machine Learning,
vol.48, pp.299-320, 2002.
F David G. Denison, Bani K. Mallick, and Adrian F. M. Smith, “A bayesian cart algorithm”, Biometrika, vol.85,
pp.363-377, June 1998.

Place CART within a Bayesian framework by specifying a
prior on tree space.

Can get multiple tree realizations by using tree-changing
proposal distribution: birth/death/change/swap.

Get multiple realizations of 1 tree, average over posterior to
form predictions.



Bayesian Regression Tree Models

Data generating model is

y(x) = f (x) + ε, ε ∼ N(0, σ2)

A regression tree models this data as

y(x) = g(x ;T ,M) + ε

where g(·;T ,M) represents the regression tree



Bayesian Regression Tree Models

Data generating model is y(x) = f (x) + ε, ε ∼ N(0, σ2)

A regression tree models this data as

y(x) = g(x ;T ,M) + ε

where g(·;T ,M) represents the regression tree.

Bayesian framework:

π(T ,M, σ2) = π(M|T , σ2)π(T |σ2)π(σ2)

see Chipman et al (1998), Denison et al (1998)



From Bayesian CART to BART

F Yuhong Wu, Hkon Tjelmelanda and Mike West, “Bayesian CART: Prior Specification and Posterior Simulation”,
Journal of Computational and Graphical Statistics, vol.16, 2007.
F Matt Taddy, Robert B. Gramacy and Nick Polson, “Dynamic Trees for Learning and Design”, Journal of the
American Statistical Association, vol.106, pp.109-123, 2010.
F Robert B. Gramacy and Herbert K.H. Lee, “Bayesian Treed Gaussian Process Models With an Application to
Computer Modeling”, Journal of the American Statistical Association, vol.103, pp.1119-1130, 2008.
F Hugh A. Chipman, Edward I. George and Robert E. McCulloch, “BART: Bayesian Additive Regression Trees”,
The Annals of Applied Statistics, vol.4, pp.266-298, 2010.



Bayesian Additive Regression Tree Models

BART model is similar:
A regression tree models this data as

y(x) =
m∑
j=1

g(x ;Tj ,Mj) + ε

where gj(·;Tj ,Mj) represents a single regression tree.

Bayesian framework:

π((T1,M1), . . . , (Tm,Mm), σ2)
m∏
j=1

π(Mj |Tj , σ
2)π(Tj |σ2)π(σ2)

see Chipman et al (2010)



Regression Trees

g(x ;T ,M) is a regression tree f’n that assigns the map µ(x)
to a given input x



Regression Trees

g(x ;T ,M) is a regression tree f’n that assigns the map µ(x)
to a given input x

Tree is parameterized by

T denotes the tree structure (decision rules, depth)
M = (µ1, . . . , µb) denotes the bottom-node µ’s



Regression Trees

g(x ;T ,M) is a regression tree f’n that assigns the map µ(x)
to a given input x

Tree is parameterized by

T denotes the tree structure (decision rules, depth)
M = (µ1, . . . , µb) denotes the bottom-node µ’s

Many forms for µi (x) ∈ M

linear: µ(x) = x ′β (Chipman et al 1998; Denison et al 1998)
Gaussian Process: µ(x) ∼ GP(x ; ·) (Gramacy and Lee, 2008)
Constant: µ(x) = µ (Wu et al 2007; Chipman et al 2010)



Regression Trees

g(x ;T ,M) is a regression tree f’n that assigns the map µ(x)
to a given input x

Tree is parameterized by

T denotes the tree structure (decision rules, depth)
M = (µ1, . . . , µb) denotes the bottom-node µ’s

Many forms for µi (x) ∈ M

linear: µ(x) = x ′β (Chipman et al 1998; Denison et al 1998)
Gaussian Process: µ(x) ∼ GP(x ; ·) (Gramacy and Lee, 2008)
Constant: µ(x) = µ (Wu et al 2007; Chipman et al 2010)

Typically considering conjugate forms so that
π(T |σ2) =

∫
π(T |M, σ2)π(M)dM is available in closed form



Regression Trees

The Coordinate View of g(x;")  

x2 < d x2 % d 

x5 < c x5 % c 

µ3 = 7 

µ1 = -2 µ2 = 5 

Easy to see that g(x;") is just a step function 

µ1 = -2 µ2 = 5 

⇔ 
µ3 = 7 

c 

d x2 

x5 

8 



Regression Trees

source: E.I. George, BNPSki2014



Building up fit by adding tiny bits of fit...

pointilism=Seurat, modern pointilism=ansi art?



MCMC Algorithm

Draw T ,M|· in two steps:

1 draw T |· (Metropolis-Hastings step via proposal distributions)

2 draw M|T , · (Gibbs step for conjugate priors)

Draw σ|M,T , · (Gibbs step for conjugate prior)



The good, the bad

The Good:

Flexible model as the “basis” adapts to the data. Handling
continuous and discrete variables is straightforward

Scales to large datasets using a parallel MCMC sampler
(Pratola et al.)

The Bad:

Bayesian regression tree models known to suffer from poor
mixing due to the MH step for T |·
Leads to lack of interpretability of regression trees,
under-representation of uncertainty, and more complicated
problems in more complicated models



Bayesian Regression Trees in Computer Experiments

F Robert B. Gramacy, Matt Taddy, and Stefan M. Wild, “Variable selection and sensitivity analysis using dynamic
trees, with an application to computer code performance tuning”, The Annals of Applied Statistics, vol.7, 2013.
F Hugh A. Chipman, Pritam Ranjan and Weiwei Wang, “Sequential design for computer experiments with a
flexible Bayesian additive model”, The Canadian Journal of Statistics, vol.40, pp.663?678, 2012.
F Matthew T. Pratola, Hugh A. Chipman, James Gattiker, David M. Higdon, Robert McCulloch and William
Rust, “Parallel Bayesian Additive Regression Trees”, Journal of Computational and Graphical Statistics, to appear.
F Matthew T. Pratola and David M. Higdon, “Bayesian Regression Tree Calibration of Complex High-Dimensional
Computer Models”, revised

And not in computer experiments, but maybe still useful...

F Matthew T. Pratola, “Efficient Metropolis-Hastings Proposal Mechanisms for Bayesian Regression Tree
Models”, submitted
F Edward I. George, Hugh A. Chipman, Robert McCulloch and Tom Shively, “Monotone BART”, BNPSki, 2014.
F Christoforos Anagnostopoulos and Robert B. Gramacy, “Dynamic Trees for Streaming and Massive Data
Contexts”, tech report, University of Chicago Booth School of Business, 2012.
F Justin Bleich, Adam Kapelner, Edward I. George and Shane T. Jensen, “Variable Selection Inference for
Bayesian Additive Regression Trees”, submitted



more of the bad...

Previous attempts to improve mixing:

1 Early literature suggests augmenting birth/death proposals
with change and swap proposals, but they are very inefficient.

2 Multiple chain/multiple restart approaches

3 Chipman et al (2010) use an additive representation which
forces shallow trees. It was believed that in such a setup,
birth/death proposals would be sufficient to ensure adequate
mixing.

4 Wu et al (2007) develop a “radical restructure” proposal
which seems to alleviate mixing problems in their examples.
However, it is computationally expensive and does not scale
well with p, the number of predictors.

5 Gramacy and Lee (2008) suggest a SMC approach.



When Mixing Goes Wrong

Let’s look at three examples

1 A single-tree example given in Wu et al 2007

2 A computer experiments example using BART

3 A calibration example from Pratola & Higdon, 2014



Single-tree example

Wu et al generate data according to the following function, which
defines a response surface with 3 regions. In this setup, x1, x3 are
generated to be highly correlated.

y(x) =


1 + N(0, 0.25) if x1 ≤ 0.5 and x2 ≤ 0.5

3 + N(0, 0.25) if x1 ≤ 0.5 and x2 > 0.5

5 + N(0, 0.25) if x1 > 0.5



Computer Experiments Example

BART model is fit to the Friedman function with n = 5k and small
σ2 = 0.1 to simulate a computer experiments dataset:

f (x) = 10sin(2πx1x2) + (x3 − .5)2 + x4 + x5
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Computer Experiments Example

BART model is fit to the Friedman function with a small σ2 = 0.1
to simulate a computer experiments dataset:

f (x) = 10sin(2πx1x2) + (x3 − .5)2 + x4 + x5



Calibration Example

Pratola and Higdon (2014) develop a CMCE model using additive
regression trees to combine field data and simulator outputs for
estimating simulator parameters θ and predicting the field at
out-of-sample input settings.

yf (x) = η(x , θ) + δ(x) + εf ; y(x , t) = η(x , t) + ε
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Calibration Example

Here, η(x , t) = t1x + t2 and yf (x) = −x + 0.4 + 0.1x2 + εf where
εf ∼ N(0, 0.01)
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Existing Proposals
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New, Efficient Proposal Mechanisms

Structural changes in the tree are important to the MCMC
sampler.. most of the “fit” is realized through birth/death changes
to trees in BART

But what about the uncertainty? Some of our results suggest that
we miss roughly half of the posterior uncertainty when structural
proposals are poor.

Our work lead to 2 novel proposal mechansims:

1 Tree rotation

2 Perturb and perturb within change-of-variable



Tree Rotation

So far, we have devised proposal mechanisms to efficiently modify
an existing tree structure

But, what about trees that are structurally different that still have
high posterior probability? How can we efficiently generate such
trees in our MCMC sampler?



Tree Rotation



Tree Rotation
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Tree Rotation

For the rotate step, we

1 Generate T ′ ∼ q(T , ·)

2 Accept T ′ with probability α = min
{

1, π(T ′)q(T ′,T )
π(T )q(T ,T ′)

}
This involves the ratio of the integrated likelihoods for all the
terminal nodes belonging to the subtree of the rotation nodes
parent.

Rotation is composition of simpler operations. Right-rotation:

RT = RL
mergeRR

mergeRL
cutRR

cutRR
rotT



Generating Rotation Proposals

Rrot can occur at any internal node exluding the root node

Rcut is deterministic

Rmerge is defined recursively and can lead to the generation of
a finite number of merged trees, of which one is randomly
selected

There are 7 unique merge types in this recursion, for example:
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Tree Rotation

Benefits include:

moves between high probability modes

1 rotate restructures the tree in a way that would have taken
multiple birth/death moves

pushes some nodes up and others down increasing the chance
that an internal node can get low enough to be pruned

changes model dimension, no existing MH proposal for
internal nodes does this

it remains a local computation, so cheaper to implement than
the restructure move



Rotation Example
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Perturb

Previous approaches to propose a new cutpoint value ci at node i :

Draw from the prior. Results in low acceptance rates because
proposed cutpoint is often not consistent with existing tree
structure

Draw from prior restricted to structure of tree ancestral to
node i . Often still has low acceptance rates as only partially
consistent with existing tree structure



Perturb

Let C vi
p(i) be the collection of cutpoints for all nodes ancestral i

splitting on vi
Let C vi

l(i) (similarly C vi
r(i)) be the collection of cutpoints for all left

(similarly right) descendent nodes of i splitting on vi

In order to propose a new cutpoint that is consistent with the
entire tree structure, choose a new cutpoint value for ci from the
interval(

avii , b
vi
i

)
=
(
max

(
0,min(C vi

p(i)),max(C vi
l(i))
)
,min

(
1,max(C vi

p(i)),min(C vi
r(i))

))
Such proposals are entirely consistent with the existing tree
structure.



Perturb

For the perturb MH step, we

1 Generate c ′i ∼ unif (avii , b
vi
i )

2 Accept c ′i with probability α = min
{

1,
π(c ′i )
π(ci )

}
This requires simply computing the ratio of normal likelihoods.



Perturb Example

To perturb at the node x1 < 0.5 (node 5) we have
C v1

p(5) = {0.1, 0.8}, C v1

l(5) = {0.2} and C v1

r(5) = {}.
So, we draw a cutpoint from the range (0.2, 0.8)
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Perturb within change-of-variable

Previous approaches propose a new variable vi at node i simply
drawing from the prior, giving low acceptance rates
We use a pre-conditioned change-of-variable proposal by proposing
changes to variables highly correlated with the existing variable.

q(vk , vj) =

Cor(Xk ,Xj)× I(avji ,bvji )
6={}∑

l Cor(Xk ,Xl)× I(avli ,b
vl
i )6={}

Then, given the new variable, draw a new cutpoint using the
perturb procedure described.



Perturb within change-of-variable

For the perturb within change-of-variable MH step, we

1 Generate v ′i ∼ q(vi , ·)

2 Generate c ′i ∼ unif (a
v ′
i

i , b
v ′
i

i )

3 Accept v ′i , c
′
i with probability α = min

{
1,

π(v ′
i ,c

′
i )q(v ′

i ,vi )

π(vi ,ci )q(vi ,v
′
i )

}
eg: Suppose p = 3 and Cor(X1, ·) = [1.0, 0.0, 0.9] and variable 3
has cutpoints available at node 5. Then, a transition from
v5 = 1→ v5 = 3 is proposed with probability 0.9

1+0.9 ≈ 0.47 and the
new cutpoint is drawn from (av3

5 , b
v3
5 ) = (0, 0.7).



Single Tree Example

With only b/d, the sampler quickly converged on a single tree
representation with 4 terminal nodes (acceptance rate = 0)

With our modifications included, the MCMC appears to fully
sample all trees consistent with the data (acceptance rate ∼ 20%)

Note that change, swap and restructure proposals do not change
tree dimensionality, so even with these proposals it is unlikely the
sampler would have found the more parsimoniuous 3-terminal node
structure.



Single Tree Example

��

�� �

� �

��

�� ��

� � � �

��

�� ��

� � � �

��

���

��

��

�� ��

� � � �

��

�� ��

� � � �



Computer Experiments Example

Fit BART with m = 200 trees, acc. rate improves from 4% to 25%
or 70%
Empirical coverage of the 90% credible interval improves from 53%
to 96% or 92%
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Computer Experiments Example

Fit BART with m = 200 trees, acc. rate improves from 4% to 25%
or 65%
Empirical coverage of the 90% credible interval improves from 53%
to 96% or 92%



Calibration Example

Regression tree calibration model with and without the proposals
developed.
We had η(x , t) = t1x + t2 and yf (x) = −x + 0.4 + 0.1x2 + εf , so
(θ1, θ2) = (−1, 0.4) and δ(x) = 0.1x2 ∼ 0
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Calibration Example

Regression tree calibration model with and without the proposals
developed.
Acceptance rate improved from <10% to 23%
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Conclusion

Bayesian Regression Tree models have some nice properties which
make them well suited to computer experiments problems
(non-stationarity, “big data”, matrix-free)

Mixing problematic with small σ2 or large n - developed two novel
MH proposal mechanisms to improve mixing

The perturb proposal efficiently generates proposals that are
consistent with the tree

Extended with a pre-conditioned change-of-variable proposal that
uses the empirical correlation structure of the covariates

The tree rotation generates dimension-changing proposals at
interior nodes of the tree. Efficient since only terminal nodes
descendent of the rotation node are needed in computing the
integrated likelihood accept/reject step.

Might be viewed as a swap proposal that retains tree consistency.

All the proposals developed do not depend on the data.

Future work with trees & computer experiments: heteroscedasticity,
dimension reduction, others...


