
Journal of Applied Statistics, Vol. 23, No. 4, 1996, 435 ± 449

An evaluation of a non-parametric method of
estimating semi-variograms of isotropic
spatial processes

S. CHERRY, J. BANFIELD & W. F. QUIMBY, Department of Mathematical

Sciences, Montana State University, USA

SUMMARY Semi-variograms are useful for describing the correlation strucure of spatial

random variables. Valid semi-variograms must be conditionally negative de® nite. To

ensure this restriction when estimating these functions, a valid parametric model is typically

® tted to a sample semi-variogram. Recently, a method of ® tting valid semi-variograms

without having to choose a parametric family has been described in the literature. T he

method is based on the spectral representation of positive de® nite functions. In this paper,

the method is evaluated using simulated data. T he ® ts obtained using the non-parametric

method are compared with ® ts obtained by ® tting four parametric models (exponential,

Gaussian, rational quadratic and power) to simulated data using non-linear least squares.

T he comparisons are based on the integrated squared errors of the resulting ® ts. T he non-

parametric estimator always resulted in ® ts that were as good as those obtained using the

parametric models. T he non-parametric method is faster, easier to use and more objective

than the parametric methods. Some examples are presented.

1 Introduction

Semi-variograms are used by geostatisticians to describe correlation structure

among spatial random variables (Cressie, 1991). They are useful as a description

of spatial dependence and also play a key role in spatial prediction (i.e. kriging).

Following Cressie (1991), let

{Z(s): s Î D}

be a spatial stochastic process, where D Ì R d. Z(s) represents a random variable for

each location s, where s is assumed to vary continuously over D.
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The semi-variogram is de® ned to be

c (si , sj ) 5
Var[Z(si) 2 Z(s j)]

2

For second-order stationary isotropic random ® elds, there is a simple relationship

between semi-variograms and covariance functions. Denoting a covariance function

by C(h) and a semi-variogram by c (h), where h denotes the Euclidean distance

between two points, it is not di� cult to show that

c (h) 5 C(0) 2 C(h)

where C(0) 5 Var[Z(s)]. The quantity C(0) is referred to as the `sill’ in geostatistics.

Valid covariance functions must be positive de® nite. Similarly, valid semi-

variogram functions must satisfy a mathematical property known as conditional

negative de® niteness. Letting h i j denote the Euclidean distance between two points

si and s j in R d, these two properties are de® ned as follows.

A function C(hi j) is said to be positive de® nite in R d if

R
n

i 5 1
R
n

j 5 1

k i k jC(h i j) > 0

for all k i , h i j and n. A function c (h ij) is said to be conditionally negative de® nite in

R d
if

R
n

i 5 1
R
n

j 5 1

k i k j c (hi j) < 0

for all h ij and n, and for all k i, with the condition that R k i 5 0.

It is easy to see that, if C(h) is positive de® nite in R d, then k 2 C(h) is conditionally

negative de® nite in R d for any k Î R 1. Also, it should be noted that functions that

are positive de® nite (conditionally negative de® nite) in R d are not necessarily

positive de® nite (conditionally negative de® nite) in R p where p> d, but are positive

de® nite (conditionally negative de® nite) in R p where p< d.

To guarantee conditional negative de® niteness, geostatisticians typically ® t known

valid models to sample semi-variograms. A variety of methods have been used to

® t semi-variograms, including maximum-likelihood, restricted maximum-likelihood

and non-linear least-squares methods (Cressie, 1991). The most commonly used

method has been to ® t a model by inspection. The choice of a model is subjective

and implies assumptions about the underlying spatial process. This subjectivity can

lead to diŒerences in conclusions about the correlation structure of the process

(Englund, 1990). It has been recognised that a non-parametric method of estimat-

ing semi-variogram functions would be desirable (Cressie, 1991), but satisfying the

property of conditional negative de® niteness has been an obstacle.

Recently, several papers have addressed this issue. Shapiro and Botha (1991)

and Sampson and Guttorp (1992) estimated semi-variograms using a linear com-

bination of a more general class of known valid functions. Hall et al. (1994) used

a modi® ed kernel regression technique. Lele (1995) has developed a method of

constructing conditionally negative de® nite matrices for use in kriging. His method

does not require the speci® cation of a parametric family of semi-variograms and

performs well in practice (Lele, 1995). It does not actually produce an explicit

semi-variogram, and does not provide estimates of parameters such as the sill.

In what follows, the Shapiro ± Botha (SB) method of ® tting valid semi-variograms
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will be examined further. Section 2 describes the SB method of estimating semi-

variograms. Section 3 describes how the SB method was implemented, and Section

4 discusses the results of comparing the SB method with a more traditional

parametric method. Two examples are presented in Section 5, and conclusions

and recommendations for implementation are discussed in Section 6.

2 The SB method

The SB non-parametric estimation procedure relies on the spectral representation

of isotropic positive de® nite functions. Schoenberg (1938) established the follow-

ing results.

A function C(h) is positive de® nite in R d if and only if it has a spectral repre-

sentation

C(h) 5 ò
`

0

X d(ht) dF(t)

where

X d (x) 5 (2

x)
(d 2 2)/2

C (d

2)J(d 2 2)/2(x)

Here, J m is the Bessel function of the ® rst kind of order m , and F is a non-decreasing

bounded function on t > 0.

Fortunately, the somewhat complicated X d(x) reduces as follows:

· X 1(x) 5 cos(x) for one dimension;

· X 2(x) 5 J0(x) for two dimensions;

· X 3(x) 5 sin(x) /x for three dimensions.

Shapiro and Botha (1991) formulated the problem of non-parametric estimation

of semi-variograms as follows. Using the spectral properties of positive de® nite

functions, and assuming second-order stationarity and isotropy, they wrote the

semi-variogram as

c (h) 5 C(0) 2 C(h)

5 C(0) 2 ò
`

0

X d (ht) dF(t)

Letting F be a step function with non-negative jumps p j at nodes tj , j 5 1, . . . , m ,

they considered the problem of ® nding an (m+ 1)-dimensional vector p 5 (p1, . . . ,

pm, c0) Â that minimizes

Q(p) 5 R
r

i 5 1

w i[c Ã (h i) 2 c0+ R
m

j5 1

X d(h i tj)p j]
2

where c Ã (h) is a sample semi-variogram and c0 5 C(0). The w i terms are weights and

r is the number of lags at which a semi-variogram estimate exists. The minimization

is carried out under the constraints that

p j > 0, j 5 1, . . . , m
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and

co 2 R
m

j5 1

p j > 0

The problem was modi® ed for the comparisons in this paper. On recognizing that

C(0) 5 ò
`

0

dF(t) 5 R
m

j 5 1

p j

the above problem can be recast as one of ® nding an m-dimensional vector

p 5 (p1, . . . , pm) Â to minimize

Q(p) 5 R
r

i 5 1

w i{ c Ã (h i) 2 R
m

j 5 1

[1 2 X d(hitj)]p j}
2

(1)

subject to the constraint that p j > 0, j 5 1, . . . , m .

Let A be an r 3 m matrix with elements {aij} 5 {1 2 X d (hitj)}, let p be an m 3 1

solution vector and let W be an r 3 r weight matrix. Then, equation (1) can be

written as

Q(p) 5 ( c Ã 2 Ap) Â W ( c Ã 2 Ap) (2)

For convenience, W is assumed to be an identity matrix in this paper. The resulting

non-parametric estimate (with solution pÄ ) of the semi-variogram has an explicit

representation as

c Ã (h) 5 R
m

j 5 1

[1 2 X d(ht j)]pÄ j (3)

Note that R
m
j 5 1 pÄ j is an estimate of the sill.

Shapiro and Botha (1991) did not compare their method with more traditional

parametric methods. They did not discuss how to choose the nodes, choosing them

in their examples in what they describe as an ad hoc manner. They did discuss how

to choose appropriate weights based on the work of Cressie (1985, 1991), but

noted that, for their examples, the weights made little diŒerence.

3 Fitting non-parametric semi-variograms

Let Z(si), i 5 1, . . . , n, be n observations from a spatial random process. Generally,

estimation of the semi-variogram function starts with the semi-variogram cloud

(Cressie, 1991); a plot of the [n(n 2 2)]/2 distinct values of

Y i j 5
[Z(si) 2 Z(s j)]2

2

against hij. A preliminary smoothing of this cloud yields a sample semi-variogram.

The most widely used smoothing method is the classical method of moments

estimator of Matheron (Cressie, 1991). This has the form

c Ã (h) º
1

2 ½ N(h) ½
R

½ N(h) ½
[Z(si) 2 Z(sj)]2 (4)

where si and sj are in R d, N(h) º {(si, s j): h+ ( si 2 s j ( ; i, j 5 1, . . . , n}, and ½ N(h) ½ is



Non-parametric estimation of semi-variograms 439

the number of pairs in N(h). If the data are irregularly spaced, then this sample

semi-variogram estimator is modi® ed (Cressie, 1991). Although c Ã (h) is unbiased,

it is not resistant to outliers.

The topic of the best way to determine sample semi-variograms has been an

active area of research in itself. In particular, Cressie (1991) argues strongly that

the semi-variogram cloud and the classical method of moments sample semi-

variogram are not appropriate, because of their sensitivity to outliers, and discusses

alternatives. However, the semi-variogram cloud and method of moments estimator

remain the methods of choice for the majority of practitioners. Most available

software depends heavily on these (see, for example, Deutsch & Journel, 1992).

All sample semi-variograms used in this paper were determined in this manner.

Gaussian random ® elds were simulated for 50 locations spaced one unit apart

on a one-dimensional transect. This yielded a total of 1225 distinct pairs of

Y i j 5
[Z(si) 2 Z(s j)]2

2

over 49 lags. It is typical to consider only lags with an adequate number of

observationsÐ usually 30 or more (Cressie, 1991). Thus, the number of lags

considered for the comparisons was taken to be 20, and the resulting semi-

variogram cloud is a scatterplot of 790 points of Y ij versus 20 lags with 50 2 h

observations at lag h. The nugget eŒect was set to zero for all the simulations.

Evaluating the SB method using simulated one-dimensional data can be criti-

cized, because most spatial data occur in two or three dimensions. However, the

form of sample semi-variograms, i.e. the `data’ that are being used for the ® tting,

is not aŒected much by the spatial dimension in which the data were collected. At

most, the points in the sample semi-variogram might not occur at equally spaced

lags. Thus, the results of an evaluation based on one-dimensional data should be

applicable to data collected from higher dimensions.

Shapiro and Botha (1991) motivated their discussion with the one-dimensional

version of X d(ht), although they brie¯ y discussed the two- and three-dimensional

versions. The three-dimensional version of the SB estimator was chosen for all

non-parametric ® ts in this paper, i.e.

X 3(ht) 5
sin(ht)

ht

This version will yield non-parametric estimates that are guaranteed to be condi-

tionally negative de® nite for spatial data from one, two or three dimensions.

A solution to equation (2) was found using the program NNLS described in

Lawson and Hanson (1974). A solution requires that the nodes (i.e. the tj terms)

be chosen before minimization. The selection of a set of nodes involves the selection

of a set of functions of the form [1 2 X d(htj)] that will be used to construct the

estimated semi-variogram. The set of nodes selected will aŒect the ® t. However, it

is ine� cient to try to customize the selection of nodes to a given ® tting problem.

Such a method of choosing nodes is also open to the criticism that one can achieve

any ® t desired. One of the strengths of the non-parametric method is that it has

the potential to be less subjective than the parametric ® tting procedures currently

used. The choice of nodes should be made in some systematic, objective way that

produces a collection of functions that is rich enough (in some sense) to capture

the behavior of the sample semi-variogram. Sampson and Guttorp (1992) ® tted
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TABLE 1. The minimum, 25th percentile, median, 75th percentile and maximum

of the residual norms from 100 ® ts, using four diŒerent selections of nodes

500 nodes 500 nodes

200 nodes (® rst set) 1000 nodes (second set)

Minimum 0.60 0.60 0.60 0.60

25th percentile 1.79 1.78 1.78 1.79

Median 2.55 2.52 2.52 2.55

75th Percentile 4.17 4.15 4.14 4.14

Maximum 12.37 12.32 12.31 12.33

Note: The simulated data are from an exponential model with a sill and range of 10.

their non-parametric semi-variograms using an algorithm originally designed for

use in estimating mixtures. A diŒerent approach is described in the following.

There is no mathematical reason to restrict the number of nodes to be less than

the number of observations. One could simply saturate the node space by choosing

a large number of nodes and letting the NNLS procedure, along witht data, pick

the nodes that are important. The rest will be assigned jumps of zero.

There are three questions that need to be resolved with the saturation approach.

(1) How should the nodes be selected?

(2) How many nodes are enough?

(3) Does the saturation approach lead to over® tting?

These questions are addressed next. In each instance, the comments refer to ® ts

obtained to sample semi-variograms determined from simulated realizations of an

isotropic Gaussian random ® eld with a true semi-variogram function that was

exponential with a sill of 10 and range of 10. (The range is de® ned as the spatial

lag h at which c (h) 5 0.95C(0).)

3.1 Node selection and number

Initially, ® ts based on collections of several hundred nodes were evaluated. The

nodes were all restricted to the interval [0, 20]. Achieving a good ® t requires a

suitable number of nodes near zero. These are associated with lower frequency

curves that allow the behavior of the data at larger lags to be captured. However,

the function

1 2
sin(ht)

ht

rises so quickly to an asymptote with increasing t that relatively few nodes larger

than four are necessary to capture the behavior of the data at smaller lags.

Theoretically, there is no upper limit to the number of nodes. Practically,

however, the number chosen should be kept small enough to make the ® tting

computationally feasible.

Table 1 shows the minimum, median, maximum and the interquartile range of

the Euclidean norms of the residual vectors from ® ts to 100 simulated data

sets.There were four diŒerent node selections. The selections were as follows:

(1) 200 nodes, with 100 equispaced in (0, 4] and 100 equispaced in [4.16, 20];

(2) 500 nodes, with 250 equispaced in (0, 4] and 250 equispaced in [4.064, 20];
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(3) 1000 nodes, with 500 equispaced in (0, 4] and 500 equispaced in [4.032, 20];

(4) 500 modes equispaced in (0, 20].

Increasing the number of nodes did not increase the accuracy of the ® t, but did

increase computational time. It appears that the ® rst selection of 200 nodes works

well and this selection was used in all subsequent ® ts. Although results are not

presented here, some experimental ® tting with the two-dimensional version of the

non-parametric estimator also worked well with that selection of nodes.

3.2 Saturation and over® tting

Table 1 provides evidence that increasing the number of nodes does not result in

over® tting. One reason is that the non-negativity constraints on the parameter

estimates have a smoothing eŒect. In eŒect, constrained least-squares ® tting is a

form of regularization analagous to penalized least-squares routines used in the

solution of ill-posed inverse problems.

The main reason for the lack of over® tting is that the three-dimensional version of

the SB estimator was chosen. This automatically imposes smoothness constraints. A

comparison of 1 2 X d(x) for increasing values of d will show that valid non-

parametric semi-variograms constructed from the higher-dimensional versions will

be smoother than those constructed from the lower-dimensional versions. This

heuristic argument for increasing smoothness with increasing d is made rigorous in

Schoenberg (1938, p. 822).

Even if interpolation is not a problem, some may still feel that the estimated

functions are not su� ciently smooth. Shapiro and Botha (1991) show how it is

possible to impose monotonicity and convexity constraints on the ® ts, by imposing

appropriate constraints on ® rst and second derivatives. Also, choosing d 5 ` will

result in a monotonic increasing ® t. Sampson and Guttorp (1992) chose this

version ( X ` 5 exp( 2 ht)
2) for their ® ts. It is possible to obtain smoother sample semi-

variograms by smoothing the semi-variogram cloud by splines, kernel regression or

isotonic regression, for example. The SB method could be applied to these

smoother sample semi-variograms to yield valid ® ts. The SB method can, in fact,

be thought of as a ® lter that transforms any sample semi-variogram into a

conditionally negative de® nite function. Cherry (1994) discusses a penalized ® tting

procedure within the context of non-parametric sill estimation that also has the

bene® t of imposing additional smoothness constraints on the estimated semi-

variograms.

4 Comparison of non-parametric and parametric methods

The comparisons are based on ® tting a non-parametric model and various para-

metric models to sample semi-variograms based on simulated realizations of ® ve

random ® elds, each with a true exponential semi-variogram function with a sill of

10 and ranges that varied from two to 18 in increments of four. The exponential

model was chosen because it is easy to simulate and is a popular choice for

parametric ® tting. A total of 100 realizations were simulated with 50 locations

spaced one unit apart on a one-dimensional transect for each of the ® ve random

® elds. The nugget eŒect was set to zero for each model.

Four parametric models (exponential, Gaussian, rational quadratic and power)

were ® tted to the sample semi-variogram using a non-linear least-squares program
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(UMSOLVE) in Matlab. Cressie (1985) recommends the use of weighted least-

squares ® ts and Shapiro and Botha (1991) discuss how to incorporate Cressie’ s

suggested weights into their method. A brief examination of results from both

weighted least-squares ® ts and non-weighted least-squares ® ts revealed no appre-

ciable diŒerences for the parametric and non-parametric methods, and only

unweighted ® ts were used for the comparisons presented below.

With the nuggest eŒect equal to zero, the models have the following forms:

· exponential: c (h) 5 s[1 2 exp( 2 3h/r)];

· Gaussian: c (h) 5 s[1 2 exp( 2 3h/r)2];

· rational quadratic: c (h) 5 s{h
2/[1+ (h

2/r)]};

· power: c (h) 5 bh
k .

The parameters s and r correspond to the sill and range respectively. The power

model has no sill or range.

The power model was included despite the fact that it cannot be the semi-

variogram for a second-order stationary process, because it does not have a sill.

However, the model can give good ® ts to data from a second-order stationary

process in which all the Y ij terms in the semi-variogram cloud occur at lags less

than the range.

Initial starting values for the parameters in the parametric ® ts were the true

values of the underlying exponential model, except for the power model, where

starting values consistent with a straight line with a slope of 1 were chosen. The

® ts were compared by computing the integrated squared error (ISE) over the

interval [0, 20], where

ISE 5 ò
20

0

[ c Ã (h) 2 c (h)]2 dh

was evaluated using the trapezoid rule ( c Ã (h) is the estimated semi-variogram and

c (h) is the true semi-variogram function).

Figure 1 shows four box plots of the resulting ISEs. The ® gure only gives results

for data from realizations of the four random ® elds with true ranges of 6 ± 18. For

the simulated data from a random ® eld with a range of two, the rational quadratic

and power models ® t so poorly that their ISEs swamped the results from the other

® ts if they were included in the box plot. The points in the ® gure that lie above

the upper whisker are outliers. Table 2 gives the minimum, maximum, and the

25th, 50th and 75th percentiles for the ISE values calculated from the simulations.

The NNLS procedure always converges (Lawson & Hanson, 1974), but the

non-linear least-squares program occasionally failed to converge. This was a

problem for the rational quadratic model when the simulated data came from the

exponential model with a range of two (10 of the 100 attempted ® ts failed to

converge), and for the exponential model when the simulated data came from the

exponential model with a range of 18 (six of the 100 attempted ® ts failed

to converge).

The failure of the rational quadratic model to give an adequate ® t of the data

from the simulation with a range of two is puzzling. It has the same general shape

as the true underlying exponential model. However, the failure of the power model

(Table 2) is not surprising at all. The exponential model with a sill of 10 and a

range of two rises quickly to its asymptote. The power model simply cannot track

this behavior.
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FIG. 1. Box plots of integrated squared errors from non-parametric (SB) and parametric models, ® tted

to simulated data sets based on exponential models with sills of 10 and the indicated ranges.

Data were also generated for two other isotropic random processes. One had a

true semi-variogram function that was a mixture of a rational quadratic model and

a hole-eŒect model valid for three-dimensional spatial data. With the nugget eŒect

set to zero, the semi-variogram function is

c (h) 5 10[1 2
sin(h)

h ]+
2h

2

[1+ (h
2/2)]

The sill for this semi-variogram is 14.

The minimum, 25th percentile, median, 75th percentile and maximum ISE

values for the ® ve comparisons are shown in Table 3. The non-parametric ® ts

again compare favorably with the parametric ® ts. Data for the other process (a

mixture of spherical semi-variogram models with a sill of four) are not presented,

in the interest of space, but the SB method again performed well.

Also not presented here are results of simulations in which the one- and two-

dimensional versions of X d were used. The two-dimensional version produced
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TABLE 2. The minimum, 25th percentile, median, 75th percentile and maximum ISE values from non-

parametric and parametric semi-variogram models ® tted to 100 simulated data sets

Exponential Gaussian Rational Power

Range Percentile SB model model model quadratic model

2 Minimum 3.97 2.29 2.29 9.71 79797.97

25th 25.84 23.66 23.66 534.16 226248.1 6

Median 68.13 64.77 64.77 1857.10 356117.0 7

75th 138.24 133.73 133.73 5477.22 536841.6 7

Maximum 762.90 813.44 813.44 66672.13 2639251.1 5

6 Minimum 3.222 2.03 7.12 2.61 20.10

25th 32.09 22.10 27.36 21.13 48.01

Median 86.63 68.38 80.82 69.36 93.70

75th 159.09 157.20 174.98 157.65 184.75

Maximum 1392.4 8 1380.91 1500.23 1397.24 1327.76

10 Minimum 5.94 1.79 9.92 3.53 15.00

25th 65.50 59.87 68.68 60.04 72.24

Median 140.75 131.86 139.93 134.36 152.92

75th 357.36 327.91 345.53 330.64 342.24

Maximum 2441.9 6 2190.03 2331.54 2257.03 2121.19

14 Minimum 7.55 0.94 10.86 3.56 9.21

25th 42.27 40.69 50.05 39.23 53.73

Median 125.52 119.48 143.13 130.51 123.44

75th 296.72 286.54 299.19 289.034 287.39

Maximum 1859.6 7 1804.29 1866.11 1833.58 1791.90

18 Minimum 4.94 0.38 10.83 3.48 5.51

25th 55.47 44.95 53.10 46.89 48.73

Median 125.30 119.09 131.37 121.09 123.23

75th 253.44 252.53 272.82 251.47 267.96

Maximum 2962.9 4 2850.68 2947.62 2910.38 2895.87

Note: In each case, the true semi-variogram model was exponential with no nugget eŒect and a sill of

10. The ranges varied as indicated.

results comparable with those reported above. The one-dimensional version per-

formed poorly. For example, the minimum, median and maximum ISE values

from one-dimensional ® ts to simulated data from the process with an exponential

semi-variogram with a sill and range of 10 were 147.54, 358.81 and 63842.17

respectively. The corresponding ISE values for the three-dimensional version were

5.94, 140.76 and 2441.96 (Table 2).

5 Examples

In this section, two examples of the use of the SB method will be presented. These

are examples of the non-parametric estimation of semi-variogram functions and

the non-parametric estimation of the sill for three actual data sets taken from the

literature. The non-parametric and parametric estimates are compared.

5.1 Example 1

The ® rst data set comes from Clark (1979). The data are in the form of silver

concentrations sampled from an ore body. Only data from the ® rst 75 sample
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TABLE 3. The minimum, 25th percentile, median, 75th percentile and maximum ISE values from non-

parametric and parametric semi-variogram models ® tted to 100 simulated data sets

Exponential Gaussian Rational

Percentile SB model model model quadratic Power model

Minimum 3.69 39.06 17.63 30.42 105.20

25th 89.71 107.16 81.39 93.49 169.36

Median 273.34 235.61 201.06 204.49 305.20

75th 535.76 490.06 479.80 480.11 547.42

Maximum 2513.58 2729.25 2751.94 2740.22 2753.77

Note: The true semi-variogram model was a mixture of rational quadratic and hole eŒect models with

no nugget eŒect and a sill of 14.

locations are used. This is the data set that Shapiro and Botha (1991) used to

illustrate their method. Clark (1979) ® tted a spherical semi-variogram to these data

by eye. Her estimated semi-variogram took the form

0, h 5 0

11[(3/2)(h/50) 2 (1/2)(h/50)3], 0< h < 50c (h) 5 {11 h > 50

The non-parametric ® t was achieved using the same collection of nodes as was

used above with d 5 3. Figure 2 shows the actual data, Clark’ s ® t and the non-

parametric ® t. Clark’ s sill estimate is 11. The sill estimate from the non-parametric

® t is 11.33 (see Cherry (1994) for a discussion of the estimation of the sill).

5.2 Example 2

The second data set is also from Clark (1979). The data are logged nickel

concentrations from an ore body. The experimental semi-variogram is shown in

Fig. 3. Clark estimated a nugget eŒect of 0.40 and the data shown have been

corrected to correspond to a nugget eŒect of zero.

Clark ® tted a complicated mixture of spherical models to these data. Her model

(absent of the nugget eŒect) has the form

0, h 5 0

1.15[(3/2)(h/12) 2 (1/2)(h/12)3]+ [(3/2)(h/60) 2 (1/2)(h/60)3], 0< h < 12
c (h) 5 {1.15+ ((3/2)(h/60) 2 (1/2)(h/60)3), 12< h < 60

2.15, h > 60

Figure 3 shows the actual data, Clark’ s ® t and the non-parametric ® t. Clark’ s sill

estimate is 2.15. The sill estimate for the penalized non-parametric ® t was 2.15.

Once again, the parametric model was ® tted by eye.

6 Conclusions

The results presented here show that the non-parametric method proposed by

Shapiro and Botha ® ts as well as the parametric models currently used (based on

the comparison of integrated squared errors). There is rarely a well-de® ned dividing

line between objectivity and subjectivity, but the SB method generally seems to be

more objective than the parametric methods. It is easier to implement, even if the

parametric models are being ® tted by inspection. The NNLS algorithm is fast and
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FIG. 2. Sample semi-variogram (0) and two semi-variograms ® ts to Clark’ s (1979 ) silver data: Ð Ð ,

spherical model with sill 5 11; ± ± ± , non-parametric ® t with sill 5 11.33.

always converges, and there are many similar algorithms available in the quadratic

programming literature that would also work. The method is robust to the selection

of nodes, provided that the selection results in a collection of functions of the form

1 2 X d(ht)

that is su� ciently rich to capture the behavior of the data. For d 5 3, it is important

to have a good collection of nodes near the origin. As a general recommendation,

the selection of 200 nodes used above worked well.

The observation that the SB method produced `comparable’ results could be

criticised, in that it sometimes produced inferior results. However, if a method is

simple and easy to apply to a wide class of problems, and produces results that are

not generally inferior to other commonly accepted methods, then it is worthy of

consideration. The SB method is easier, because parametric ® tting of semi-

variograms is rarely as straightforward as has been presented here. It is common

for geostatisticians to have to ® t mixtures of parametric models to achieve good

® ts. This is one reason why ® tting by inspection is so common. Issaks and Srivastava

(1989) present a detailed discussion of ® tting semi-variograms, and non-linear
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FIG. 3. Sample semi-variogram (0) and two semi-variogram ® ts to Clark’ s (1979) nickel data: Ð Ð ,

spherical model with sill 5 2.15; ± ± ± , penalized non-parametric model with sill 5 2.15. One unit of lag

is 2 m.

least-squares methods (and other parametric methods) are noticeably absent from

their discussion. Fitting the semi-variogram models, they discuss using non-linear

least-squares methods would be time-consuming and challenging.

The rather complicated model that Clark (1979) ® tted in example 2 also

illustrates this point (see Fig. 3). No single semi-variogram model is going to ® t

well enough by itself, and trying to ® t such a mixture of models by non-linear least-

squares methods would be di� cult.

An anonymous reviewer expressed concern with the failure of the estimation

procedure to deal with positive correlations between neighboring estimates of c (h).

While these correlations are also routinely ignored when ® tting parametric models,

the non-parametric method might be more likely to over® t spurious structure in

the sample semi-variogram. This is a valid criticism. The extent of the problem is

unknown, but there should be less of a diŒerence when the parametric model that

is ® tted is a complicated mixture. This is another argument for using higher-

dimensional versions of X d . Other posible methods of dealing with the problem are

to estimate the correlation structure and take it into account in the weight matrix
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W; and to use other methods of estimating the sample semi-variogram. In addition

to being less sensitive to outliers, the robust estimator of Cressie (Cressie, 1991,

pp. 74-76) is less sensitive to correlations among the estimates of c (h).

If one is also interested in a non-parametric estimate of the sill, then it may be

necessary to implement the penalized ® tting procedure described in Cherry (1994).

However, the method is still faster and easier to use than non-linear least-squares

methods. This penalized ® tting procedure has the added advantage of imposing

additional smoothness constraints. The details have been omitted here, owing to

space considerations.

The most obvious disadvantage to the SB method as implemented here is the

lack of a nugget eŒect. The estimated semi-variograms necessarily pass through

the origin. Simply estimating the nugget eŒect by considering it as an additional

parameter will not work, because, with no data at the origin, the NNLS algorithm

will assign that parameter a value of zero. One possibility is to ® nd n0 and p j , for

j 5 1, . . . , m , to minimize

Q(p 5 R
r

i 5 1

w i { c Ã (hi 2 n0 2 R
m

j 5 1

[1 2 X d (hi tj )p j]}
2

with n0 (the estimated nugget eŒect) and the p j terms constrained to be non-

negative. The minimization could be carried out by ® rst ® xing n0 with an initial

guess and solving for the p j terms using the NNLS algorithm, and then ® xing the

p j terms and solving for n0. This procedure could be continued in an iterative manner

until convergenceÐ which is guaranteed, because each step is a minimization and

Q(p) is bounded below by zero. This is a topic for further work.

The non-parametric method of Shapiro and Botha (1991) has been implemented

as a FORTRAN program and easy-to-use extended S functions (Becker et al.,

1988). The package is available as a SHAR archive in STATLIB under the

name npvar.sh.
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