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SUMMARY
Space-filling properties are important in designing computer experiments. The traditional

maximin and minimax distance designs consider only space-filling in the full-dimensional space;
this can result in poor projections onto lower-dimensional spaces, which is undesirable when only
a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can
improve one-dimensional projections but cannot guarantee good space-filling properties in larger
subspaces. We propose designs that maximize space-filling properties on projections to all sub-
sets of factors. We call our designs maximum projection designs. Our design criterion can be
computed at no more cost than a design criterion that ignores projection properties.

Some key words: Experimental design; Gaussian process; Latin hypercube design; Screening design; Space-filling
design.

1. INTRODUCTION
Space-filling designs are commonly used in deterministic computer experiments. One such

design, maximin distance design (Johnson et al., 1990), can be defined as follows. Suppose we
want to construct an n-run design in p factors. Let the design region be the unit hypercube X and
let the design be D = {x1, . . . , xn}, where each design point xi is in X = [0, 1]p. The maximin
distance design tries to spread out the design points in X by maximizing the minimum distance
between any two design points:

max
D

min
xi ,x j ∈D

d(xi , x j ), (1)

where d(xi , x j ) is the Euclidean distance between the points xi and x j .
The maximin distance criterion tends to place a large proportion of points at the corners and

on the boundaries of the hypercube [0, 1]p; thus, unlike Latin hypercube designs (McKay et al.,
1979), maximin distance designs do not have good projection properties for each factor. Morris
& Mitchell (1995) proposed to overcome this problem by searching for the maximin distance
design within the class of Latin hypercube designs. They used the criterion

min
D

⎧
⎨

⎩

n−1∑

i=1

n∑

j=i+1

1
dk(xi , x j )

⎫
⎬

⎭

1/k

(2)
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2 V. R. JOSEPH, E. GUL AND S. BA

to find the maximin Latin hypercube design, where k > 0 is chosen large enough to achieve
maximin distance.

Although maximin Latin hypercube designs ensure good space-filling in p dimensions and
uniform projections in each dimension, their projection properties in two to p − 1 dimensions
are not known. By the effect sparsity principle, only a few factors are expected to be active.
Since the active factors are unknown before the experiment, good projections to all subspaces of
the factors are important. However, little research has been done in trying to find space-filling
designs that ensure good projections to subspaces of the factors (Tang, 1993; Moon et al., 2011).
Draguljic et al. (2012) proposed a criterion incorporating projection properties in (2),

min
D

⎡

⎢⎣
1(n

2

)∑
q∈J

(p
q

)
∑

q∈J

(p
q)∑

r=1

n−1∑

i=1

n∑

j=i+1

{
q1/2

dqr (xi , x j )

}k
⎤

⎥⎦

k

, (3)

where dqr (xi , x j ) is the Euclidean distance between points xi and x j in the r th projection of q
factors, with q ∈ J ⊆ {1, 2, . . . , p}. However, (3) is difficult to compute for large p, so Draguljic
et al. (2012) had to focus their attention on subspaces with no more than two factors.

A uniformity measure is another type of space-filling criterion. The idea is to spread the
design points in the space so that the empirical distribution of the points is uniform on [0, 1]p.
Hickernell (1998) proposed the centred L2-discrepancy criterion, which ensures good projec-
tions to all subspaces. Although uniform designs are useful for approximating integrals, it is not
clear if they are as good as maximin Latin hypercube designs for approximating functions. In
fact, Dette & Pepelyshev (2010) have shown that placing more points on the boundaries than
around the centre can minimize the prediction errors from Gaussian process modelling.

2. MAXIMUM PROJECTION DESIGNS

When a design is projected onto a subspace, the distances between the points are calculated
with respect to the factors that define the subspace. Therefore, define a weighted Euclidean
distance between the points xi and x j as

d(xi , x j ; θ) =
{ p∑

l=1

θl(xil − x jl)
2

}1/2

,

where θl = 1 for the factors defining the subspace and θl = 0 for the remaining factors. It makes
sense to use weights between 0 and 1, which can be viewed as measures of importance for the
factors. Let 0 ! θl ! 1 be the weight assigned to factor l and let

∑p
l=1 θl = 1. Then the criterion

in (2) can be modified to

min
D
φk(D; θ) =

n−1∑

i=1

n∑

j=i+1

1
dk(xi , x j ; θ)

,

where θ = (θ1, . . . , θp−1)
T and θp = 1 −

∑p−1
l=1 θl . We omit the power 1/k in (2) because we

are interested only in finite values of k. Unfortunately, we have no idea about the importance of
the factors before the experiment, so there is no easy way to choose θ . One way to overcome
this difficulty is to adopt a Bayesian framework, i.e., to assign a prior distribution to θ and then
minimize the expected value of the objective function.
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Maximum projection designs 3

Assuming equal importance for all values of θ a priori, we take the prior distribution for θ
to be

p(θ) = 1
(p − 1)!

(θ ∈ Sp−1), (4)

where Sp−1 = {θ : θ1, . . . , θp−1 " 0,
∑p−1

i=1 θi ! 1}. Thus, our design criterion becomes

min
D

E{φk(D; θ)} =
∫

Sp−1

n−1∑

i=1

n∑

j=i+1

1
dk(xi , x j ; θ)

p(θ) dθ .

In general, this is not easy to evaluate. However, we can perform the integration analytically for
a special case of k, as shown below. All the proofs are given in the Appendix.

THEOREM 1. If k = 2p, then under the prior in (4),

E{φk(D; θ)} = 1
{(p − 1)!}2

n−1∑

i=1

n∑

j=i+1

1
∏p

l=1 (xil − x jl)2
.

Thus, we propose the following new criterion:

min
D
ψ(D) =

⎧
⎨

⎩
1(n
2

)
n−1∑

i=1

n∑

j=i+1

1
∏p

l=1 (xil − x jl)2

⎫
⎬

⎭

1/p

. (5)

For any l, if xil = x jl for i |= j , thenψ(D) = ∞. Therefore, the design that minimizesψ(D) must
have n distinct levels for each factor. Furthermore, because the denominator of (5) has products
of squared distances from all the factors, no two points can get close to each other in any of the
projections. Thus, the design that minimizes ψ(D) tends to maximize its projection capability
in all subspaces of factors. Therefore, we call the optimal design a maximum projection design.

3. OPTIMAL DESIGN CONSTRUCTION ALGORITHM

Although ψ(D) in (5) is easy to compute, finding the maximum projection design by mini-
mizing ψ(D) is not an easy problem. First, the number of variables in the optimization, np, is
extremely large even for moderate-sized problems. Second, the objective function has many local
minima because it becomes infinite whenever xil = x jl for any l = 1, . . . , p and i |= j . Moreover,
the design remains the same under reordering of rows or columns, which produces many local
minima. Thus, direct optimization of (5) by using a continuous optimization algorithm can easily
terminate at a local optimum.

Because a maximum projection design will have n distinct levels for each factor, it can be
viewed as a Latin hypercube design, though not necessarily with equally spaced levels. There-
fore, we can make use of algorithms for constructing optimal Latin hypercube designs, such as
simulated annealing (Morris & Mitchell, 1995). After obtaining the optimal maximum projec-
tion Latin hypercube design, we apply a continuous optimization algorithm to find the locally
optimal maximum projection design in the neighbourhood of the optimal maximum projection

 at O
hio State U

niversity on N
ovem

ber 19, 2015
http://biom

et.oxfordjournals.org/
D

ow
nloaded from
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Latin hypercube design. The gradient of the objective function is

∂ψ p(D)

∂xrs
= 2(n

2

)
∑

i |= r

1
∏p

l=1(xil − xrl)2

1
(xis − xrs)

,

which can be used to implement a fast derivative-based optimization algorithm. This algorithm is
implemented in the R package (R Development Core Team, 2015) MaxPro (Ba & Joseph, 2015).

4. NUMERICAL RESULTS
In this section we compare the performances of maximum projection designs, maximum pro-

jection Latin hypercube designs, and other popular space-filling designs such as maximin Latin
hypercube designs, uniform designs and generalized maximin Latin hypercube designs (Dette &
Pepelyshev, 2010). We use nine simulation settings, with p = 5, 10, 20 and n = 5p, 10p, 20p.
Because the conclusions from all nine cases are similar, we report results only for the 100-run,
10-factor design. The maximin Latin hypercube design is constructed using the R package SLHD
(Ba, 2015), the uniform design is constructed using the software JMP, and the generalized max-
imin Latin hypercube design is constructed using the arcsine transformation of the maximin Latin
hypercube design (Dette & Pepelyshev, 2010).

Designs are compared in terms of three space-filling criteria: a maximin distance measure,
a minimax distance measure, and a uniformity measure. These three measures are summarized
for each subdimensional projection. For a given subdimension q, a measure is computed for all
possible projections and the worst case is used for comparison.

Consider the maximin criterion in (1). A better maximin measure in projection dimension q
that also incorporates the maximin index of the design is

Mmq = min
r=1,...,(p

q)

⎧
⎨

⎩
1(n
2

)
n−1∑

i=1

n∑

j=i+1

1

d2q
qr (xi , x j )

⎫
⎬

⎭

−1/(2q)

,

where dqr (xi , x j ) is the Euclidean distance between points xi and x j in the r th projection of
dimension q. This measure is plotted in Fig. 1. As expected, the maximin Latin hypercube and
generalized maximin Latin hypercube designs have the largest Mmq values in the full design
space. On the other hand, the maximum projection and maximum projection Latin hypercube
designs outperform the others even when the projection dimension is reduced by one.

Now consider the minimax distance criterion (Johnson et al., 1990)

min
D

max
x∈X

d(x, D),

where d(x, D) = minxi ∈D d(x, xi ). Its computation for a given projection dimension q is cum-
bersome, because we need to search the whole space [0, 1]q to find the point having maximum
distance to the nearest point in the design. Therefore, we approximate the distance by sampling
a large number Nq of points from [0, 1]q . We use the union of a 3q factorial design with levels
{0, 0·5, 1} and a 216-run Sobol sequence for the sample. A better minimax measure that also
incorporates the minimax index of the design is

mMq = max
r=1,...,(p

q)
max
u∈Xq

{
1
n

n∑

i=1

1

d2q
qr (u, xi )

}−1/(2q)

,
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Projection dimension (q)
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Fig. 1. Plot of Mmq (the larger the better) against q for the maximum projection
design (squares), maximum projection Latin hypercube design (triangles), maximin
Latin hypercube design (circles), uniform design (plus signs), and generalized max-

imin Latin hypercube design (crosses).

Projection dimension (q)
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Fig. 2. Plot of mMq (the smaller the better) against q for the maximum projection
design (squares), maximum projection Latin hypercube design (triangles), maximin
Latin hypercube design (circles), uniform design (plus signs), and generalized max-

imin Latin hypercube design (crosses).

where Xq is the set of sample points with size Nq = 3q + 216. This measure is plotted in Fig. 2.
There is no clear winner in this case.

Finally, consider the centred L2-discrepancy measure CL2, defined in Hickernell (1998). The
maximum values of CL2 among the q-dimensional projections are shown in Fig. 3. As expected,
the uniform design performs best under this criterion because it is obtained by minimizing CL2.
With respect to the CL2 criterion, the performance of the maximum projection design is sig-
nificantly worse than that of the uniform design, but much better than that of the generalized
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6 V. R. JOSEPH, E. GUL AND S. BA

Projection dimension (q)
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Fig. 3. Plot of maximum CL2 (the smaller the better) against q for the maximum
projection design (squares), maximum projection Latin hypercube design (triangles),
maximin Latin hypercube design (circles), uniform design (plus signs), and general-

ized maximin Latin hypercube design (crosses).

maximin Latin hypercube design. This is because both maximum projection and generalized
maximin Latin hypercube designs favour more points towards the boundaries than at the centre,
which affects the overall uniformity of the points in the design space. Interestingly, the maxi-
mum projection Latin hypercube design has much better uniformity than the maximum projec-
tion design, over all dimensions. This is surprising because the Latin hypercube restriction only
makes the spacing of the levels equal, but somehow it improves the uniformity in all subspaces.
We believe that uniformity is not as important as the maximin and minimax distance measures
in a computer experiment, because the primary objective of a computer experiment is approxi-
mation and not integration. Thus, the poor performance of maximum projection designs under
the uniformity measure is not of great concern.

5. GAUSSIAN PROCESS MODELLING

The space-filling designs discussed earlier are model-independent, which allows the exper-
imenter to fit a wide variety of models to the data. On the other hand, better designs can be
developed for a specified model class. In computer experiments, Gaussian process modelling, or
kriging, is widely used for approximating the response surface (Sacks et al., 1989). The ordinary
kriging model is Y (x) = µ + Z(x), where x ∈ Rp, µ is the overall mean, and Z(x) is a stationary
Gaussian process with mean zero and covariance function σ 2 R(·). A popular choice for R(·) is
the Gaussian correlation function,

R(xi − x j ;α) = exp

{
−

p∑

l=1

αl(xil − x jl)
2

}
, αl ∈ (0, ∞) (l = 1, . . . , p).

The maximum entropy design (Shewry & Wynn, 1987) is obtained by maximizing the deter-
minant |R(α)|, where R(α) is the correlation matrix whose (i, j) element is R(xi − x j ;α).
A major drawback of such a model-based design is that we need to specify the value of α for
finding the optimal design, which is unknown before conducting the experiment. One can use a
guessed value of α for finding the optimal design, but the designs can be very poor if the guess is
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Maximum projection designs 7

badly wrong. One way to mitigate this problem is to assign a prior distribution to α and optimize
the expected value of the objective function. Let us assume a noninformative prior for α,

p(α) ∝ 1 (α ∈ Rp
+). (6)

THEOREM 2. For the Gaussian correlation function and the noninformative prior for α in (6),
maximum projection designs minimize E{

∑n
i=1
∑

j |= i Rγi j (α)} for any γ > 0.

In other words, maximum projection designs minimize the expected sum of off-diagonal ele-
ments of the correlation matrix. Although this result is not directly related to the maximum
entropy criterion, there seems to be some connection. An application of Hadamard’s inequal-
ity and Gershgorin’s theorem gives the following bounds on |R(α)|:

n∏

s=1

⎧
⎨

⎩1 −
∑

j |= is

Ris j (α)

⎫
⎬

⎭
+

! |R(α)| ! 1,

where i1, . . . , in ∈ {1, . . . , n}, which need not be distinct, and {x}+ = max{x, 0}. Thus, minimiz-
ing the off-diagonal elements of the R(α) matrix tends to increase the lower bound on |R(α)|, and
the upper bound is achieved when all the off-diagonal elements are zero. Therefore, the maximum
projection designs are expected to perform well with respect to the maximum entropy criterion.
The nice thing is that we do not need to specify any value for the correlation parameters to obtain
maximum projection designs.

To compare the performance of maximum projection design with that of maximum entropy
design, we generated a 100-run, 10-factor maximum entropy design using the software JMP,
where the correlation parameter αl was set to 5 for l = 1, . . . , 10. Now we compute the minimum
determinant among the q-dimensional projections, minr log |Rq,r (α)|, where Rq,r is the corre-
lation matrix calculated for the r th q-dimensional projection. As seen in Fig. 4, the maximum
projection design is better than the maximum entropy design in lower-dimensional projections
and has comparable performance in higher-dimensional projections.

The ordinary kriging predictor is

ŷ(x) = µ̂(α) + r(x;α)T R−1(α){y − µ̂(α)1n},

where µ̂(α) = 1T
n R−1(α)y/{1T

n R−1(α)1n}, r(x;α) is an n × 1 vector with i th element R(x −
xi ;α), y = (y1, . . . , yn)

T represents the experimental data, and 1n is a length-n vector of ones.
We can see that the predictor involves the inverse of the correlation matrix at the optimal value of
α. The optimal value of α is estimated using likelihood- or crossvalidation-based methods. For
example, the maximum likelihood estimate can be obtained by minimizing

log |R(α)| + n log σ̂ 2(α)

with respect to α, where σ̂ 2(α) = {y − µ̂(α)1n}T R−1(α){y − µ̂(α)1n}/n. This again requires the
computation of R−1(α), but now for many values of α. The matrix inverse operation can become
difficult and unstable at some values of α, so it would be good to use an experimental design
that avoids this for all values of α. The instability of a matrix inverse can be assessed from its
condition number. Figure 5 shows the maximum of the condition numbers of the q-dimensional
projections upon adding a small perturbation, 10−6, to the diagonals of R(α), where αl = 5 for
l = 1, . . . , 10. We can see that the maximum projection design performs better than the other
designs.
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Fig. 4. Plot of the minimum log-determinant (the larger the better) against q for the
maximum projection design (squares), maximum projection Latin hypercube design
(triangles), maximin Latin hypercube design (circles), maximum entropy design

(plus signs), and generalized maximin Latin hypercube design (crosses).
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Fig. 5. Plot of the maximum condition number (the smaller the better) against q
for the maximum projection design (squares), maximum projection Latin hypercube
design (triangles), maximin Latin hypercube design (circles), uniform design (plus

signs), and generalized maximin Latin hypercube design (crosses).

The maximum prediction variance in the design space can be used as another criterion for
evaluating a design. For ordinary kriging, the prediction variance is proportional to

1 − r(x;α)T R−1(α)r(x;α) + {1 − r(x;α)T R−1(α)1n}2

1T
n R−1(α)1n

.

The maximum prediction variance among the q-dimensional projections can now be approxi-
mated using the same set of Nq points used earlier in approximating the minimax measure; it is
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Projection dimension (q)
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Fig. 6. Plot of the maximum prediction variance of ordinary kriging (the smaller the
better) against q for the maximum projection design (squares), maximum projection
Latin hypercube design (triangles), maximin Latin hypercube design (circles), uni-
form design (plus signs), and generalized maximin Latin hypercube design (crosses).

plotted in Fig. 6. The maximum projection design and the generalized maximin Latin hypercube
design are the two winners on this performance measure.

Considering all the Gaussian process-based criteria and space-filling criteria except the unifor-
mity measure, the maximum projection design seems to be an attractive choice for deterministic
computer experiments. However, if uniformity is also important in a particular application, then
the maximum projection Latin hypercube design would be a good compromise choice.
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APPENDIX
Proof of Theorem 1

For k = 2p we have

E{φk(D; θ)} = 1
(p − 1)!

n−1∑

i=1

n∑

j=i+1

∫

Sp−1

{
p∑

l=1

θl(xil − x jl)
2

}−p

dθ .

Let

Q p(p, a) =
∫

Sp−1

{
p−1∑

l=1

θldl +
(

1 −
p−1∑

l=1

θl

)
a

}−p

dθ .

For a |= dp−1, integrating with respect to θp−1 gives

Q p(p, a) = 1
(p − 1)(a − dp−1)

{
Q p−1(p − 1, dp−1) − Q p−1(p − 1, a)

}
. (A1)
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10 V. R. JOSEPH, E. GUL AND S. BA

Assume that

Q p−1(p − 1, a) = 1
(p − 2)! d1 · · · dp−2a

. (A2)

Then, from (A1), Q p(p, a) = 1/{(p − 1)! d1 · · · dp−2dp−1a}. This result holds for all a, including
a = dp−1. Since Q2(2, a) = 1/(d1a), by mathematical induction (A2) is true for all p. Now the result
follows because Q p(p, dp) = 1/{(p − 1)! d1 · · · dp}. #

Proof of Theorem 2

For any γ > 0 we have

E

⎛

⎝
n∑

i=1

∑

j |= i

Rγi j

⎞

⎠=
n∑

i=1

∑

j |= i

E

[
p∏

l=1

exp
{
−γαl(xil − x jl)

2}
]

=
n∑

i=1

∑

j |= i

[
p∏

l=1

∫ ∞

0
exp
{
−γαl(xil − x jl)

2} dαl

]

= 1
γ p

n∑

i=1

∑

j |= i

1∏p
l=1 (xil − x jl)2

,

which is minimized by a maximum projection design. #
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