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Abstract

Modeling experiments with qualitative and quantitative factors is an important
but unresolved issue in computer modeling. Some Gaussian process models that
incorporate both qualitative and quantitative factors are proposed. The key to the
development of these new models is an approach for constructing correlation func-
tions with qualitative and quantitative factors. An iterative estimation procedure
is developed for the proposed models. Modern optimization techniques are used in
the estimation to ensure the validity of the constructed correlation functions. The
proposed method is illustrated with an example involving a known function and a
real example for modeling the thermal distribution of a data center.

KEY WORDS: Cokriging; Design of experiments; Kriging; Multivariate Gaussian pro-

cesses; Semi-definite programming.

1 INTRODUCTION

In recent years, there has been a growing interest in the use of computer models in

sciences, engineering, and business. The corresponding physical experimentation might
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otherwise be time-consuming, costly, or even impossible to conduct. Because of their

many attractive features, Gaussian process (GP) models have been established as a core

tool for modeling computer experiments. (For detailed discussions of such models, see

Santner, Williams, and Notz 2003; Fang, Li, and Sudjianto 2005.) An important but

unresolved issue is how to model computer experiments with qualitative and quantitative

factors. Standard methods assume that all the factors involved in a computer experiment

are quantitative. However, in many situations, some factors are qualitative by nature.

Consider, for instance, the data-center computer experiment to be discussed in Section 6.

The configuration variables that determine the thermal properties of a data center can be

either quantitative or qualitative. Examples of quantitative variables are rack tempera-

ture rise, rack power, and diffuser flow rate. Examples of qualitative variables are diffuser

height (with levels “mid height of the room” and “ceiling height”), mixed power (with

levels “uniform,” “alt-zero,” and “alt-half”), and hot-air return-vent location (with lev-

els “perpendicular-bottom,” “perpendicular-top,” “parallel-bottom,” and “parallel-top”)

(Schmidt, Cruz, and Iyengar 2005). Computer models with qualitative and quantitative

factors occur frequently in business operations applications, where some social economical

status of the customers, such as gender and commuting method, is inherently qualitative.

The purpose of this article is to propose new GP models to address this issue. Note

that the corresponding problem for physical experimentation is much easier because no

GP model is involved (Wu and Ding 1998; Wu an Hamada 2000). Quadratic models have

long been used for modeling physical experiments involving quantitative and qualitative

factors. While such polynomial models can provide reasonable approximations to physical

phenomena, they are inapplicable to computer modeling. Unlike physical experiments,

computer experiments are known to have highly non-linear input-output relationships,

include many factors, and are deterministic. It is essential to develop data-driven mod-

els for computer experiments with qualitative and quantitative factors. Inspired by the

success of GP models with quantitative factors, we extend them to accommodate both

qualitative and quantitative factors. As a key to the development of the new GP models,

a general approach for constructing correlation functions with qualitative and quantita-

tive factors is proposed. An iterative estimation procedure is developed for the proposed

model, making use of some modern optimization techniques to ensure the validity of the

constructed correlation functions.

The remainder of this article is organized as follows. Section 2 presents the models

used throughout the article and the motivation for this study. Section 3 gives a gen-

eral approach for constructing correlation functions for GP models with qualitative and

quantitative factors. Section 4 presents estimation and prediction procedures. Sections 5

and 6 illustrate the proposed method with an example involving a known function, and
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with a real example for modeling temperature in a data center. Section 7 provides some

discussions and concluding remarks. Proofs and computational details are deferred to the

Appendix.

2 MODELS AND MOTIVATION

2.1 Gaussian Process Models With Quantitative Factors

For later development, we first briefly review GP models with quantitative factors. Sup-

pose that an experiment involves I factors (input variables) x = (x1, . . . , xI)t; the data

consist of an n× I matrix of input variable values, denoted by X = (x0
1, . . . ,x

0
n)t, and the

corresponding response values y = (y1, . . . , yn)t. The GP model assumes the following

structure:

y(x) = βtf(x) + ε(x), (2.1)

where f(x) = (f1(x), . . . , fm(x))t is a set of m pre-specified functions, and β = (β1, . . . , βm)t

is a vector of unknown coefficients. The residual ε(x) is assumed to be a stationary GP

with mean zero and covariance

cov(ε(x1), ε(x2)) = σ2Kφ(x1,x2),

where σ2 is the variance, and Kφ(·, ·) is the correlation function, which depends on the

unknown correlation parameters φ.

It is well known that the product of one-dimensional correlation functions is a valid

correlation function. The use of the product correlation function allows each factor to have

its own correlation parameters, which can shed light on how response values are correlated

among different factors. One popular choice is the product Gaussian correlation function

(Santner, Williams, and Notz 2003):

Kφ(x1,x2) =
I∏

i=1

exp{−φi1(xi1 − xi2)
2}, (2.2)

where φi1 ≥ 0 for i = 1, . . . , I. Here, exp{−φi1(xi1 − xi2)2} is a valid correlation function

for the variable xi (Abrahamsen 1997). Note that the power correlation parameters are

fixed at 2. This reduces the complication of estimating the correlation parameters. In

addition, the sample path of the GP is infinitely differentiable, which is a reasonable

assumption for many applications. The scale correlation parameters φ11, . . . ,φI1 measure

the ruggedness of the response surface (sample path) of the GP. Larger values of φi1’s
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imply a more rugged response surface.

2.2 Gaussian Process Models With Qualitative and Quantita-

tive Factors

To develop GP models with both qualitative and quantitative factors, we first note that a

computer experiment tends to involve more quantitative factors than qualitative factors.

This is because quite often more quantitative factors are needed to specify the underlying

physics or mathematics of the experiment, and they are also more informative than qual-

itative factors. Although the number of qualitative factors is usually not large, they can

determine some important properties of the experiment. For example, in the data-center

experiment to be discussed in Section 6, factors that are associated with the choice of

cooling materials, the method of heat transformation, and the orientation of diffusers are

qualitative. To take into account the distinct natures and roles of quantitative and quali-

tative factors in computer modeling, three possible analysis approaches can be employed,

which are described below.

The first is the independent analysis in which distinct Gaussian processes are used

for modeling the data collected at different level combinations of the qualitative factors.

This method may be relevant in some extreme situations, where different qualitative fac-

tor settings result in totally different physics of the experiments. It assumes no similarity

among the experimental results obtained at the different level combinations of the quali-

tative factors, thus rendering the independent analysis the sole sensible choice. However,

such scenarios rarely occur in practice, because a typical computer experiment contains

many quantitative factors, which make the responses at different qualitative factor levels

correlated to each other. Thus, the independent analysis has very limited applicability.

In addition, its implementation requires fitting many GP models, and the number of un-

known parameters in these models can be large, even when the number of qualitative

factors is small. Consider, for example, an experiment with seven quantitative factors

and three 4-level qualitative factors. The independent analysis would require fitting 64

(= 43) models, which involve 64 mean parameters (with constants used as the means

of the processes), 64 variances, and 448 (= 64 × 7) correlation parameters. To accu-

rately estimate these 576 parameters would require a large number of observations, which

generally cannot be afforded.

The second approach is the collapsed analysis, which completely ignores qualitative

factors in an experiment by simply fitting a single GP model based on the quantitative

factors. At first glance, this approach does not seem to pose much challenge in the model

fitting because only one GP with the quantitative factors is involved. However, this
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oversimplification of the problem ignores the contribution of qualitative factors, which

can play important roles in determining the system performance.

In view of the shortcomings of the above two approaches, we introduce an integrated

analysis in this article. It assumes a single GP model across different values of qualitative

and quantitative factors as to borrow strengths from all the observations. Suppose that

a computer experiment involves factors w = (xt, zt)t, where x = (x1, . . . , xI)t are quanti-

tative factors, and z = (z1, . . . , zJ)t are qualitative factors. Similar to (2.1), the response

y(w) at the input value w is assumed to follow the model below:

y(w) = µ(w) + ε(w). (2.3)

Here, the mean µ(w) will be simplified to a constant µ, as often suggested in computer

experiments (Welch, Buck, Sacks, Wynn, Mitchell, and Morris 1992), thus simplifying

subsequent modeling and inference procedures. The residual ε(w) is assumed to be a

zero-mean GP with variance σ2 and some correlation function. Construction of a “valid”

correlation function for ε(w) is not straightforward because such a function needs to

be defined in the space involving both qualitative and quantitative factors. The Gaus-

sian correlation function used in Section 2.1 or other distance-based correlation functions

(Santner, Williams, and Notz 2003) are not applicable due to the absence of the notion

of “distance” for qualitative factors. A general method for constructing valid correlation

functions is developed in Section 3.

3 CONSTRUCTION OF CORRELATION FUNC-

TIONS FOR GAUSSIAN PROCESSES WITH QUAL-

ITATIVE AND QUANTITATIVE FACTORS

In this section, we propose a general method for constructing valid correlation functions

for ε(w) in model (2.3). The method does not use the normality assumption of Gaussian

processes and hence applies to general stochastic processes with qualitative and quanti-

tative factors.

First, consider the simple case involving only one qualitative factor, z1, with m1 levels,

denoted by 1, . . . ,m1. For simplicity, let εu(x) = ε((xt, u)t), for u = 1, . . . ,m1. To define

the correlation function of the stochastic process ε(w), where w = (xt, z1)t, we envision a
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mean-zero m1-variate process

ε∗(x) =




ε1(x)

...

εm1(x)



 .

Then we only need to define correlation and cross-correlation functions for ε∗(x). A

convenient approach is to assume that ε∗(x) = Aη(x), where A = (a1, . . . , am1)
t is an

m1 ×m1 nonsingular matrix with unit row vectors (i.e., at
uau = 1 for u = 1, . . . ,m1) and

η(x) = (η1(x), . . . , ηm1(x))t is an m1-variate stochastic process. Here, η1(x), . . . , ηm1(x)

are m1 independent stochastic processes with the same variance σ2 and the correlation

functions K0
φ1

, . . . , K0
φm1

, respectively. Then the correlation function for ε(w) is

cor(ε(w1), ε(w2)) = cor(εz11(x1), εz12(x2)) = cor(at
z11

η(x1), a
t
z12

η(x2)),

where w1 = (xt
1, z11)t and w2 = (xt

2, z12)t are two input values. Since

cor(η(x1), η(x2)) =

[
m1∏

u=1

K0
φu

(x1,x2)

]
Im1

with Im1 being the m1 ×m1 identity matrix,

cor(at
z11

η(x1), a
t
z12

η(x2)) = at
z11

az12K
0
φ(x1,x2), (3.4)

where Kφ(x1,x2) =
∏m1

u=1 K0
φu

(x1,x2).

Let τu1,u2 = at
u1

au2 , where 1 ≤ u1 ≤ m1 and 1 ≤ u2 ≤ m1. Then T1 = (τu1,u2)m1×m1 =

AAt is an m1 × m1 positive definite matrix with unit diagonal elements. In fact, any

positive definite matrix with unit diagonal elements can be written as BBt, where B is

a nonsingular matrix with unit row vectors. Thus, the above construction shows that,

for any positive definite matrix T1 = (τu1,u2)m1×m1 with unit diagonal elements and any

correlation function Kφ(x1,x2), cor(ε(w1), ε(w2)) = τz11,z12Kφ(x1,x2) is a valid correla-

tion function. Similar correlation functions are used in Mardia and Goodall (1993) for

kriging, in Brown, Le, and Zidek (1994) for assigning a prior to a covariance matrix, and

in Banerjee and Gelfand (2002) for modeling a cross-covariance matrix.

If z1 has two levels, 1 and 2, and τ12 > 0, then τz11,z12 can be represented as exp{−θI[z11 %=
z12]}, where θ = ln(1/τ12) > 0 and I[z11 %= z12] is the indicator function that takes 1 if

z11 %= z12 and 0 otherwise. If z1 has m1 > 2 levels and τz11,z12 is positive and the same

for any z11 %= z12, then τz11,z12 = exp{−θI[z11 %= z12]}. This would be the case if the m1

levels of z1 are of isotropic nature; that is, the cross-correlation between ε((xt, z11)t) and
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ε((xt, z12)t) is the same for all z11 %= z12. As will be shown at the end of this section,

T1 = (τu1,u2)m1×m1 so defined is a positive definite matrix with unit diagonal elements

and is thus a valid correlation matrix.

Now consider the general case with J qualitative factors z = (z1, . . . , zJ)t, where zj has

mj levels, denoted by 1, . . . ,mj, for j = 1, . . . , J . As an extension to (3.4), a correlation

function for ε(w) can be constructed as

cor(ε(w1), ε(w2)) =
J∏

j=1

[
τj,zj1,zj2Kφj

(x1,x2)
]
, (3.5)

where Tj = (τj,u1,u2)mj×mj is an mj × mj positive definite matrix with unit diagonal

elements. This is a valid correlation function as it is the product of J valid correlation

functions τ1,z11,z12Kφ1
(x1,x2), . . . , τJ,zJ1,zJ2KφJ

(x1,x2) in (3.4) for the qualitative factors

z1, . . . , zJ (Santner, Williams, and Notz 2003).

In particular, if Kφj
(x1,x2) takes the form exp{−

∑I
i=1 φij(xi1−xi2)2} in (2.2), it is a

valid correlation function as discussed in Section 2.1. Then, the correlation function (3.5)

becomes

cor(ε(w1), ε(w2)) =

[
J∏

j=1

τj,zj1,zj2

]
exp

{
−

I∑

i=1

φi(xi1 − xi2)
2

}
, (3.6)

where φi =
∑J

j=1 φij for i = 1, . . . , I. Note that the correlation function in (3.6) bears

some resemblance with its counterpart in (2.2) for the GP model with quantitative factors.

This similarity will, in part, motivate the estimation and inference procedures in Section

4.

If, in addition, all of the qualitative factors zj’s are isotropic (which is automatic if they

all have two levels), and the correlation is positive, then, τj,zj1,zj2 = exp{−θjI[zj1 %= zj2]},
where θj = ln(1/τj,1,2) > 0, as explained above. In this case,

Tj = (1− cj)Imj + cj11t,

where cj = exp{−θj} and 1 = (1, . . . , 1)t is the mj × 1 vector of 1’s. Then, for any

non-zero mj × 1 vector a,

atTja = (1− cj)a
ta + cj(a

t1)2 > 0,

because 0 < cj < 1. Thus, Tj is a positive definite matrix with unit diagonal elements,

and is indeed a legitimate choice in (3.6). Then, the correlation function (3.6) simplifies
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to

cor(ε(w1), ε(w2)) = exp

{
−

I∑

i=1

φi(xi1 − xi2)
2 −

J∑

j=1

θjI[zj1 %= zj2]

}
. (3.7)

This special correlation function leads to much simplified estimation and inference proce-

dures, as will be seen in Section 4.

4 ESTIMATION AND PREDICTION

Suppose the data consist of n different input values, denoted by Dw = {w0
1, . . . ,w

0
n}, and

the corresponding responses, denoted by y = (y1, . . . , yn)t. Consider model (2.3) with

the correlation function in (3.6). The unknown parameters that need to be estimated are

µ, σ2, φ = (φ1, . . . ,φI)t, and T = {T1, . . . ,TJ}. The maximum likelihood method is

adopted for the estimation. Denote by µ̂, σ̂2, φ̂, and T̂ the resulting estimators.

The Gaussian process assumption implies that the log-likelihood of y, up to a constant,

is

−1

2

[
n ln σ2 + ln |R| + (y − Fµ)tR−1(y − Fµ)

2σ2

]
, (4.8)

where F = (1, . . . , 1)t is an n × 1 vector; R is the correlation matrix, which depends on

the correlation parameters φ and T, and its (i, j)th entry is cor(ε(w0
i ), ε(w

0
j )) defined in

(3.6).

First, given φ and T, µ̂ and σ̂2 can be obtained as follows:

µ̂ = (FtR−1F)−1FtR−1y,

σ̂2 =
1

n
(y − Fµ̂)tR−1(y − Fµ̂). (4.9)

Substituting σ̂2 into (4.8), we obtain a simplified form (up to a negative constant)

n ln(σ̂2) + ln |R|, (4.10)

where σ̂2 and R depend on the correlation parameters φ and T.

If all the qualitative factors are isotropic and the correlations are positive, then (3.6)

becomes (3.7) and the estimation of φ and T becomes the estimation of φ and θ =

(θ1, . . . , θJ)t. As discussed in Section 3, the correlation function in (3.7) is valid if the φi’s
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and θj’s are positive. Then, φ̂ and θ̂ can be obtained as follows:

(φ̂, θ̂) = argmin(φ,θ) [n ln(σ̂2) + ln |R|]
subject to φi ≥ 0, i = 1, . . . , I,

θj ≥ 0, j = 1, . . . , J. (4.11)

Next we discuss the estimation for the general case without assuming that z1, . . . , zJ

are isotropic. The absence of the isotropic assumption poses great challenges in the esti-

mation, because the validity of (3.6) as a correlation function requires that all the Tj’s

be valid correlation matrices, that is, positive definite (or positive semi-definite) matrices

with unit diagonal elements. The problem of estimating a positive definite or positive

semi-definite matrix occurs in many applications in statistics, including factor analysis

(Bartholomew and Knott 1999) and Gaussian graphical models (Lauritzen 1996; Ed-

wards 2000). Two features of the present application set it apart from others. First, our

problem is especially challenging because it entails estimating multiple correlation matri-

ces whereas in other applications, such as a Gaussian graphical model, usually a single

correlation matrix is involved. Second, as a major advantage in computer experiments,

one can somehow “freely” choose input factor values. This flexibility is not shared by the

observational studies to which factor analysis and Gaussian graphical models are usually

applied. As will be discussed in Section 4.2, the use of “appropriate” experimental designs

for input factors can significantly simplify the estimation procedure.

Standard methods used in statistics for maximizing a likelihood function involving a

positive definite matrix work in the following manner. First, note that a matrix is positive

definite if and only if all its leading principle minors are positive. These constraints

then transfer to a series of nonlinear inequalities involving the elements of the matrix.

Finally, an optimization problem is solved with the resulting nonlinear inequalities as the

constraints and the elements of the matrix as the optimization variables. This “element-

orientated” approach would involve many complicated nonlinear inequalities and a huge

number of optimization variables even when the dimension of the matrix is not very

large, making it computationally infeasible. To better address the optimization problem

(4.10) with positive-definiteness constraints on the Tj’s, we make use of some recently

developed optimization techniques in semi-definite programming. A brief introduction of

semi-definite programming is given in Section 4.1. The estimation procedure is developed

in Section 4.2, and the prediction procedure is provided in Section 4.3.
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4.1 Semi-definite Programming

Consider the optimization problem

min
X

C • X

subject to Ai • X = bi, i = 1, . . . ,m,

X & 0 (' 0), (4.12)

where the optimization variable is X in the space of n× n real symmetric matrices. The

inequalities X & 0 and X ' 0 mean that X is positive definite and positive semi-definite,

respectively. The problem (4.12) is referred to as a semi-definite programming (SP) in

optimization (Vandenberghe and Boyd 1996; Wolkowicz, Saigal, and Vandenberghe 2000).

The notation C • X represents the inner product of the matrices C and X:

C • X =
n∑

i=1

n∑

j=1

cijxij, (4.13)

where xij and xij are the (i, j)th entries of C and X, respectively. Equivalently, C • X

can also be written as tr(CX). Throughout the article, “tr” stands for the trace of

a square matrix. This type of optimization problem arises in many fields, including

statistics, communication theory, and machine learning. The SP problem is a convex

problem, which can be solved efficiently by interior point algorithms (Wolkowicz, Saigal,

and Vandenberghe 2000). The SP method takes a holistic view of positive semi-definite

matrices and computes the solution to (4.12) within a cone formed by positive definite

matrices (Vandenberghe and Boyd 1996). It can lead to significant computational savings,

especially for large scale problems.

4.2 Estimation Procedure

The general case under consideration involves J qualitative factors z1, . . . , zJ and I quan-

titative factors x1, . . . , xI . No isotropic conditions are imposed on the qualitative factors.

Without loss of generality, the number of levels of zj, denoted by mj, is assumed to be

three or higher. If a qualitative factor has two levels, it can be grouped with the quan-

titative factors in the estimation because there is no need to impose positive-definiteness
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conditions on it. If µ̂ is given, φ̂ and T̂ can be obtained as follows:

(φ̂, T̂) = argmin(φ,T) [n ln(σ̂2) + ln |R|]
subject to φi ≥ 0, i = 1, . . . , I,

Tj & 0, j = 1, . . . , J,

diag(Tj) = 1, j = 1, . . . , J,

where the optimization variables are φ and T. Throughout this article, “diag” stands for

the diagonal elements of a matrix and 1 stands for a vector of 1’s. Estimating φ and T

can be carried out by iterating between the following φ-step and T -step.

φ-step: Given T̂, φ̂ is obtained as follows:

φ̂ = argminφ [n ln(σ̂2) + ln |R|]
subject to φi ≥ 0, i = 1, . . . , I, (4.14)

where µ̂ = (FtR−1F)−1FtR−1y and σ̂2 = 1
n(y − Fµ̂)tR−1(y − Fµ̂).

T -step: Given φ̂, T̂ is obtained as follows:

T̂ = argminT [n ln(σ̂2) + ln |R|]
subject to Tj & 0, j = 1, . . . , J,

diag(Tj) = 1, j = 1, . . . , J, (4.15)

In optimization, such an iterative algorithm is called block coordinate descent or nonlin-

ear Gaussian-Seidel method (Bertsekas 1999). It is well known that this type of algorithm

will converge under mild conditions (e.g., the objective function is differentiable). The

optimization problem in (4.14) is a standard nonlinear program, which can be solved by

quasi-Newton algorithms. The major difficulty in the implementation of the procedure

lies in the T -step because of the complex objective function and constraints involved.

The details for implementing the T -step are given below. For easier presentation, let

e = y − Fµ̂ and E = eet/n throughout this article. Then,

σ̂2 = tr(etR−1(e/n)) = tr((e/n)etR−1) = tr(ER−1).

Thus, the objective function in (4.15) can be written as follows:

f(T) = n ln[tr(ER−1)] + ln |R|. (4.16)
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For computational convenience, the optimization problem in (4.15) can be approximated

by the following linear problem:

T̂ = argminT

[
f(T0) +

∑J
j=1(

∂f(T0)
∂Tj

• Tj)
]

subject to Tj & 0, j = 1, . . . , J,

diag(Tj) = 1, j = 1, . . . , J, (4.17)

where ∂f(T0)
∂Tj

is the partial derivative of f(T) with respect to Tj, evaluated at some given

value of T, T0 = {T0,1, . . . ,T0,J}. That is,

∂f(T0)

∂Tj
=

[
n

tr(ER−1)

∂tr(ER−1)

∂Tj
+

1

|R|
∂|R|
∂Tj

]
|T=T0 . (4.18)

The formulas for ∂tr(ER−1)
∂Tj

and ∂|R|
∂Tj

are given in the Appendix. Such a linear approxima-

tion has been shown to be reasonable and is widely used to approximate SP problems with

nonlinear objective function constraints (Wolkowicz, Saigal, and Vandenberghe 2000). If

necessary, this kind of linear approximation can be repeated a few times. Now define the

following block diagonal matrices

W = bkdiag(T1, . . . ,TJ), and C = bkdiag

(
∂f(T0)

∂T1
, . . . ,

∂f(T0)

∂TJ

)
. (4.19)

Note that W & 0 if and only if T1 & 0, . . . ,TJ & 0. Then, the optimization problem in

(4.17) can be recast as the following SP problem:

Ŵ = argminW C • W

subject to W & 0,

diag(W) = 1. (4.20)

Some structures of Dw can significantly simplify the computation in the T -step. This

convenience is only possible for the present experimental situation but not for an observa-

tional study. Consider first the simple case involving one qualitative factor z1 with more

than two levels, denoted by 1, . . . ,m1. Assume Dw is a cross array (Wu and Hamada

2000) of Dx and Dz, where Dx is a p× I design matrix for the quantitative factors x, and

Dz = (1, . . . ,m1)t is an m1 × 1 design matrix for the qualitative factor z1. Consequently,

Dw consists of all level combinations between those in Dx and those in Dz. Hence Dw has

n = pm1 rows (runs). As shown in the following proposition, this cross-array structure

of Dw simplifies the optimization problem in (4.15) and also makes it free of φ̂. Conse-

quently, estimating φ and T1 can be done separately by carrying out a simplified T -step
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and then the φ-step. This is much simpler than the general estimation procedure, which

iterates between the φ-step and the T -step.

Let H = (hj1j2) denote a p× p matrix with its (j1, j2)th entry given as

hj1j2 = exp

{
−

I∑

i=1

φi(xij1 − xij2)
2

}
. (4.21)

With the above assumption on experimental design, the optimization problem in (4.15)

can be simplified as follows:

Proposition 1. Suppose that Dw is a cross array of Dx and Dz. Then, the problem in

(4.15) is equivalent to

T̂1 = argminT1

(
m1 ln[tr(T−1

1 )] + ln |T1|
)

subject to T1 & 0,

diag(T1) = 1. (4.22)

The proof of this proposition is given in the Appendix. With the proposition, the linear

approximation (4.17) becomes

T̂1 = argminT1
[f(T1,0) +∇T1f(T1,0) • T1]

subject to T1 & 0,

diag(T1) = 1, (4.23)

where

f(T1,0) = m1 ln[tr(T−1
1,0)] + ln |T1,0|,

and (from Dattorro 2005, app. D.2.3 and D.2.4)

∇T1f(T1,0) = − m1

tr(T−1
1,0)

T−2
1,0 + T−1

1,0.

These expressions significantly simplify the optimization problem in (4.23). This is a SP

described in Section 4.1 and can be solved by efficient interior point algorithms.

We now consider the general case with J qualitative factors z1, . . . , zJ . Assume Dw is

a cross array of Dx, the p× I design matrix for x, and Dz, the q× J design matrix for z.

Hence Dw has n = pq rows (runs). Let z0
1, . . . , z

0
q denote the q input values for z, and T∗

13



be a q × q matrix with its (r, s)th entry given as

tr,s =
J∏

j=1

τj,z0
jr,z0

js
. (4.24)

Using the argument for establishing Proposition 1, we have the following result:

Proposition 2. Suppose that Dw is a cross array of Dx and Dz, where Dx is a p × I

design matrix for x and Dz is a q × J design matrix for z. Then, the problem in (4.15)

is equivalent to

T̂ = argminT (q ln[tr((T∗)−1)] + ln |T∗|)
subject to Tj & 0, j = 1, . . . , J,

diag(Tj) = 1, j = 1, . . . , J. (4.25)

Again, the cross-array structure of Dw reduces the estimation of φ and T to separately

carrying out the simplified T -step and then the φ-step. This is much simpler than the

general estimation procedure that iterates between the φ-step and the T -step.

If Dz also has some cross-array structure, the optimization problem in (4.25) can be

further simplified. Suppose the qualitative factors z are grouped into d ≥ 2 disjoint sets,

{zj : j ∈ Ak}, for k = 1, . . . , d, where
⋃d

j=1 Aj = {1, . . . , J} and the size of Ak is Jk ≥ 1.

Suppose further that Dz is a cross array of D1, . . . , Dd, where Dk is a qk × Jk design

matrix for the factors in {zj : j ∈ Ak}. (However, Dk is not required to be a cross array

among its constituent factors zj, j ∈ Ak.) Thus,
∏d

k=1 qk = q and
∑d

k=1 Jk = J . Let

TAk
= {Tj : j ∈ Ak} and T∗

k be a qk × qk matrix with its (r, s)th entry given as

t(k)
r,s =

∏

j∈Ak

τj,z0
jr,z0

js
. (4.26)

Again, using the argument for establishing Proposition 1, we have the following result:

Proposition 3. Suppose that Dz in Proposition 2 is a cross array of D1, . . . , Dd, where

Dk is a qk × Jk design matrix for the factors in {zj : j ∈ Ak}. Then, solving the problem

(4.25) is equivalent to solving the following d simpler problems separately:

(PAk
) : T̂Ak

= argminTAk
(qk ln[tr((T∗

k)
−1)] + ln |T∗

k|)
subject to Tj & 0, j ∈ Ak,

diag(Tj) = 1, j ∈ Ak, (4.27)

for k = 1, . . . , d. In particular, if d = J , Ak = {k}, and qk = mk, then TAk
= Tk and

14



T∗
k = Tk. Then (4.27) simplifies to

(Pk) : T̂k = argminTk
(mk ln[tr((Tk)−1)] + ln |Tk|)

subject to Tk & 0,

diag(Tk) = 1. (4.28)

The method proposed to tackle the problem in (4.15) can be used to solve the problems

in the above two propositions.

4.3 Prediction

The fitted GP model can be used in predicting the response value y at any untried point

in the design space. The empirical best linear unbiased predictor (BLUP) of y at the

point w0 is

ŷ(w0) = µ̂ + r̂t
0R̂

−1(y − µ̂), (4.29)

where R̂ is the estimated correlation matrix of y and

r̂0 = (ĉor(y(w0), y(w0
1)), . . . , ĉor(y(w0), y(w0

n)))t.

The empirical BLUP in (4.29) enjoys such nice properties as its counterpart for the Gaus-

sian process model with quantitative factors in Section 2.1, and smoothly interpolates all

the observed data points.

5 AN EXAMPLE INVOLVING A KNOWN FUNC-

TION

In this section, we consider an experiment involving one qualitative factor, z1, and one

quantitative factor, x1. The output of this experiment is assumed to come from the

following function:

y =

{
exp(1.4x1) cos(7πx1/2) if z1 = 1,

exp(3x1) cos(7πx1/2) if z1 = 2.

Figure 1 depicts the two curves of the function values with z1 = 1 and z1 = 2, respec-

tively. The overall similarity of the curves makes the independent analysis inappropriate

for this example, whereas their notable differences in some regions also make the collapsed

analysis inappropriate. The integrated analysis seems to be most appropriate among the
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three, and is expected to outperform the other two.
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Figure 1: Two curves of the function values with z1 = 1 and z1 = 2.

Table 1 lists the training data used for model building, including four runs with z1 = 1

and another four runs with z1 = 2. For comparison, the data is analyzed using the three

approaches discussed in Section 2.2.

x1 z1 y
0.0625 1 0.84
0.1875 1 -0.61
0.3125 1 -1.48
0.4375 1 0.18
0.5625 2 5.38
0.6875 2 2.28
0.8125 2 -10.09
0.9375 2 -10.56

Table 1: The training data for the example involving a known function

The independent analysis fits two separate GP models, one for the four runs with

16



z1 = 1 and one for the four runs with z1 = 2. Table 2 lists the estimated parameters

in the fitted GP models. Note that φ̂ = 1225.495 for the GP model with z1 = 1 is so

large that the prediction based on the fitted models will be rugged, potentially producing

inaccurate results. The collapsed analysis fits a GP model to the eight runs using the

values of x1 only, ignoring the difference between z1 = 1 and z1 = 2. Table 3 reports the

estimated parameters in the resulting model. The integrated analysis fits a GP model

that incorporates both x1 and z1 to the eight runs, and the estimated parameters are

given in Table 4.

φ̂ σ̂2 µ̂
z1 = 1 1225.495 0.76 -0.27
z1 = 2 31.44 50.35 -2.90

Table 2: The estimated parameters of the fitted GP models with z1 = 1 and z1 = 2 in
the independent analysis

φ̂ σ̂2 µ̂
24.15 33.50 -1.60

Table 3: The estimated parameters of the fitted GP model in the collapsed analysis

φ̂ θ̂12 σ̂2 µ̂
30.69 20.00 27.50 -1.36

Table 4: The estimated parameters of the fitted GP model in the integrated analysis

Next we assess the prediction accuracy of the three methods. The testing data con-

sists of 40 data points. For z1 = 1 and z1 = 2, x1 takes 20 equally-spaced values

0.025, 0.075, . . . , 0.975. The root mean squared errors (RMSEs) for these three predic-

tion methods are calculated. The RMSE for the integrated analysis is 7.71, which is

respectively 45% and 41% of the RMSEs (17.30 and 18.67) for the independent and col-

lapsed analyses. Clearly, the prediction accuracy of the integrated analysis is much better

than that of the other two analyses.

6 A DATA-CENTER COMPUTER EXPERIMENT

In this section, the proposed method is illustrated using a data-center computer exper-

iment. With the increasing need for storing, manipulating, and managing data sets,

data centers are widely used to provide application services or management for various

data processing, such as web hosting internet, intranet, telecommunication, and infor-

mation technology. Figure 2 shows a schematic layout of an internet data center using
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Sun Microsystems (Lawrence Berkeley National Laboratory 2002). Driven by advances

in hardware and data-storage techniques, data centers now can be very large, sprawling

over thousands of square feet.

In designing and running a reliable data center, it is essential to maintain the system

operating environment at a temperature within a functional range. Data-center facilities

are extremely energy intensive, with many computer equipments constantly generating

heat. Monitoring and studying the temperature of a data center is a difficult task, because

it is largely unknown how different configurations affect the thermal distribution of the

data center. The physical thermal process is complex, depending on many factors, and

detailed temperatures at different locations cannot be actually measured. A computer

experiment, built on computational fluid-dynamics models, implemented in professional

software like Flotherm (Flometrics 2005) and FLUENT (Fluent 1998), is often used as a

proxy to study the air movement and thermal distribution of a data center.

The experiment considered in this section models an air-cooled cabinet, implemented

in Flotherm (Flometrics 2005), for predicting the airflow and heat transfer in the electronic

equipments. Each run in this experiment takes several days to complete. We consider part

of the data from Qian (2006). Table 5 lists eight configuration variables and their levels

used in the experiment. In the table, x1, x2, x3, x4, and x5 are quantitative factors; z1,

z2, and z3 are 2-, 4- and 3-level qualitative factors, respectively. The response of interest,

denoted by y, is the temperature at one selected location of the system. More details for

the engineering background of this data center can be found in Schmidt (2003), Schmidt,

Cruz, and Iyengar (2005), and Qian (2006).

x1: Rack temperature rise (C) 10 15 20
x2: Rack power (KW) 4 12 22 28 36
x3: Diffuser angle 0 30
x4: Diffuser flow rate (%) 100 80 60
x5: Ceiling height (ft) 12 17 22
z1: Diffuser location/configuration. Even Odd
z2: Hot-air return-vent location Bot-Per Top-Per Bot-Par Top-Par
z3: Remove/mixed power Uniform Alt-Zero Alt-Half

Table 5: Configuration variables for the data center example

The five quantitative factors in Table 5 are of distinct scales, and their values are

standardized first. The standardization of each variable is carried out by subtracting its

lower design bound from its values, and then dividing the results by its design range.

All results and plots given hereafter are associated with the standardized variables, which

take values in [0, 1]. This experiment has 73 observations. There are 24 level combinations

for the three qualitative factors. Hence, on average, each of these combinations has about
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Figure 2: Schematic layout of an internet data center (Sun Microsystems) (Lawrence
Berkeley National Laboratory 2002).
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three observations, making the independent analysis infeasible. The data will be analyzed

using the integrated analysis, and the results will be compared with those obtained from

the collapsed analysis at the end of this section.

For the integrated analysis, the major difficulty with the model fitting is to estimate

the correlation matrices for z2 and z3. The estimation is carried out using the two-step

procedure in Section 4, implemented in Matlab (The MathWorks 2006) and making use of

a semi-definite programming package CVX (Grant, Boyd, and Ye 2006). Note that this

data set does not have a cross-array structure. Thus the general estimation procedure

in Section 4, where the T -step involves the SP problem (4.20), was used. The procedure

was found to converge after 100 iterations. Table 6 lists the estimated mean, variance,

and correlation parameters for the quantitative factors x1, x2, x3, x4, and x5, and the

estimated correlation parameter for z1. As shown in the table, the estimated correlation

parameters vary significantly from one quantitative factor to another, and the values for

x3 and x4 are much larger than the rest, indicating that the responses may be rugged

in the dimensions of x3 or x4. The estimated correlation for z1 between its two levels is

small (0.00005), indicating that the responses at the two levels of z1 are not significantly

correlated. This is consistent with the known fact that different placements of diffusers

(z1) in a data center lead to distinct data-center thermal distributions (Schmidt 2003;

Schmidt, Cruz, and Iyengar 2005).

µ̂ σ̂2 φ̂1 φ̂2 φ̂3 φ̂4 φ̂5 τ̂1

14.06 24.94 5.72 1.03 19.99 12.92 1.45 0.00005

Table 6: The estimated mean, variance, and correlation parameters for the quantitative
factors x1, x2, x3, x4, and x5, and the estimated correlation parameter for z1

Tables 7 and 8 give the estimated correlation matrices for z2 and z3. Both matrices

are symmetric with unit diagonal elements. Also, their eigenvalues are all positive [(0.154,

0.247, 0.311, 3.287) and (0.187, 0.454, 2.359), respectively]. Thus, the estimated corre-

lation matrices are positive definite with unit diagonal elements, and are indeed valid

correlation matrices.

i = 1 i = 2 i = 3 i = 4
j = 1 1.0000 0.7519 0.8019 0.6971
j = 2 0.7519 1.0000 0.8187 0.7137
j = 3 0.8019 0.8187 1.0000 0.7876
j = 4 0.6971 0.7137 0.7876 1.0000

Table 7: The estimated correlation matrix for z2

Following Welch, Buck, Sacks, Wynn, Mitchell, and Morris (1992), a functional ANOVA

decomposition is conducted to study the factor effects in the fitted GP model. Since the
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i = 1 i = 2 i = 3
j = 1 1.0000 0.5960 0.8119
j = 2 0.5960 1.0000 0.6230
j = 3 0.8119 0.6230 1.0000

Table 8: The estimated correlation matrix for z3

present example contains some qualitative factors, the procedure is modified accordingly.

For example, in calculating the mean effect function of a qualitative factor, evaluation

of the integral in the original ANOVA decomposition simplifies to averaging over some

discrete values. First, we consider the first-order effects. Figure 3 depicts the mean-effect

functions of the quantitative factors x1, x2, x3, x4, and x5. Table 9 lists the main effects

of the qualitative factors z1, z2, and z3.
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Figure 3: The main-effect functions of x1, x2, x3, x4, and x5

.
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z1 Even: -0.01 Odd: 0.005
z2 Bot-Per: 0.08 Top-Per: 0.06 Bot-Par: 0.09 Top-Par: 0.03
z3 Uniform: 0.05 Alt-Zero: 0.22 Alt-Half: 0.06

Table 9: Estimated main effects of z1, z2, and z3

Next, we investigate the second-order effects. Figure 4 displays the two-way interaction

plots for some selected pairs of the quantitative factors. Note the large and complex

interaction patterns of (x2, x3) and of (x4, x5). Figures 5-7 show some selected two-way

interaction functions between the quantitative and qualitative factors. Note the different

interaction patterns of (x1, z3) and (x5, z3). While the interactions of (x1, z3) are mainly

due to z3 =“alt-zero”, the interactions of (x5, z3) are mainly due to z3 =“alt-half.” Figure

6 indicates that the interactions between x4 and z2 become larger as the values of x4 move

away from the middle. As illustrated by these figures, the interactions among the variables

are rather intricate. Such nonlinear relationships cannot be captured by quadratic models.
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For comparison, the collapsed analysis of the 73 observations is also conducted. As

shown in Table 10, the estimated correlation parameters for x1, x2, x3, x4, and x5 are all

very small. This seems to imply that all the quantitative factors have small significant

effects on the thermal distribution of the data center. However, this is largely due to

ignoring the contributions of the qualitative factors, which resulted in an ill-posed cor-

relation matrix in the estimation procedure that led to very small estimated correlation

parameters.

φ̂1 φ̂2 φ̂3 φ̂4 φ̂5

0.1540 0.0443 0.3683 0.1059 0.0498

Table 10: The estimated correlation parameters for x1, x2, x3, x4, and x5 from the
collapsed analysis

For this example the integrated analysis outperformed the collapsed analysis and suc-

cessfully uncovered some intricate input-and-output relationships.

7 Discussions and Concluding Remarks

Ever since the publication of Sacks, Welch, Mitchell, and Wynn (1989), Gaussian process

models have enjoyed great popularity in computer modeling. To date, one important

but still unsettled problem is how to model computer experiments with qualitative and

quantitative factors. Here, we give a systematic treatment of building Gaussian process

models with qualitative and quantitative factors. The proposed methodology has two

major contributions. First, it is a general method for constructing correlation functions

with qualitative and quantitative factors. It makes use of some underlying multivariate

Gaussian processes. The second is an iterative procedure used for estimation. The validity

of the constructed correlation functions in the estimation is ensured using some recently

developed optimization techniques.

The proposed method is successfully applied to an example involving a known function

and a real example for designing data centers. Although the primary focus is on mod-

eling and estimation, some suggestions for selecting designs for computer experiments

with qualitative and quantitative factors are also given. Research on the design issue is

currently ongoing and will be reported elsewhere.

27



Acknowledgment

Z. Qian is grateful to Dr. Zhaosong Lu and Dr. Renato D.C. Monteiro for stimulating

discussions on some optimization issues.

Appendix: Proofs and Computational Details

Definitions and Formulas for ∂tr(ER−1)
∂Tj

and ∂|R|
∂Tj

The definitions and results below follow from Graham (1981, chap. 4).

(1): Define ∂tr(ER−1)
∂Tj

as

∂tr(ER−1)

∂Tj
=





∂tr(ER−1)
∂τj,1,1

· · · ∂tr(ER−1)
∂τj,1,mj

...
. . .

...
∂tr(ER−1)

∂τj,mj,1
· · · ∂tr(ER−1)

∂τj,mj,mj




.

For 1 ≤ r ≤ mj, 1 ≤ s ≤ mj, it is clear that ∂tr(ER−1)
∂τj,r,s

= tr
(

∂(ER−1)
∂τj,r,s

)
. Furthermore,

tr(∂(ER−1)
∂τj,r,s

) = tr(E ∂R−1

∂τj,r,s
) = tr(−ER−1 ∂R

∂τj,r,s
R−1).

(2): Define ∂|R|
∂Tj

as

∂|R|
∂Tj

=





∂|R|
∂τj,1,1

· · · ∂|R|
∂τj,1,mj

...
. . .

...
∂|R|

∂τj,mj,1
· · · ∂|R|

∂τj,mj,mj



 .

Let ρuv be the (u, v)th element of R and Ruv be the cofactor of element ρuv in |R|. Then,

for 1 ≤ r ≤ mj, 1 ≤ s ≤ mj,
∂|R|
∂τj,r,s

= tr(ABt
jrs),

where A = [Ruv] and Bjrs = [b(jrs)
uv ] are n×n matrices. Here, b(jrs)

uv = ∂ρuv

∂τj,r,s
, for 1 ≤ u ≤ n

and 1 ≤ v ≤ n.
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Proof of Proposition 1

Using the Kronecker product notation (Graham 1981), we have R = H⊗T1. Basic facts

on Kronecker product (Graham 1981, chap. 2) imply that

|H⊗T1| = |H|m1|T1|p,
ER−1 = E(H−1 ⊗T−1

1 ) = (E⊗ 1)(H−1 ⊗T−1
1 ) = (EH−1)⊗T−1

1 ,

tr(ER−1) = tr(EH−1 ⊗T−1
1 ) = tr(EH−1)tr(T−1). (7.30)

Since E and H are independent of T1, the problem (4.15) [using equation (4.16)] simplifies

to (4.22).
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