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Introduction to Computer Experiments

Introduction

What is computer experiments?

Many physical experiments which cannot be implemented practically
could only be studied by complex computer codes.

The output of a computer simulator relating x and y(x) can be viewed
as a black-box process

x → Simulators→ y(x)

Is computer experiments popular?

Personal opinion: computer experiments is not super popular in this
big data generation but have become increasingly popular in the past
two decades.

References: Santner et al. (2003), and Jones and Johnson (2009)
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Introduction to Computer Experiments

Industrial Application

The Langley glideback booster (Gramacy and Lee, 2008)

Figure 1: The glideback booster (NASA, Pamadi et al. 2014)

The booster is being developed through the computer simulators.
The primary goal is to model the lift force as a function of speed,
the angle of attack, and the sideslip angle.
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Introduction to Computer Experiments

Environmental Application

Dynamics of Ice Sheets and Glaicers (Greve 2004)

Figure 2: Ice Sheet Geometry (Course Note, Matthew Pratola 2013)
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Introduction to Computer Experiments

Biomechanical Application

A finite element (FE) computational simulator of the dynamic tibial
contact stress in gait (Leatherman et al. 2014)

Figure 3: 3D FE simulator (HSS, Guo 2014)

60 points from the FE simulator
50 kinds of material properties
Consider 10,000 different population properties in each kind of
material properties
Find the best material design!

Chen (CEJE) 09/22/2015 6 / 32



Introduction to Computer Experiments

Injection Molding Example

Figure 4: Injection Molding

Joint work with Jose Castro, Rachmat Mulyana, Maria
Villarreal-Marroquin, Thomas Santner, and Angela Dean
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Introduction to Computer Experiments

Factors of Injection Molding

A computer simulator

7 factors: Melting time, Packing time, Packing pressure, Cooling
time, Heat transfer coefficient (HTC) flow, HTC pack, and HTC open

35 simulator data

Some interested outputs: Length, Thickness, and Volume.
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Design of Computer Experiments

Design of Experiments

How to select design points?

Physical experiments
George Box: Block what you can, randomize what you cannot
Reduce the variance: Suppose we want to fit a simple regression and
we know the range of independent variable is [0, 1]. Which design will
you pick?

Hint: Var(β̂) = (XTX )−1σ2
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Design of Computer Experiments

Design of Computer Experiments

The code is deterministic: No random error.
Designs should not take more than one observation at any set of inputs
(no replication)

All input factors are known: No need for randomization and blocking.
Designs should provide information about all portions of the
experimental region (space filling)

Suppose we want to select design points for a computer experiment.
Which design will you pick?
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Design of Computer Experiments

Latin Hypercube Design

McKay et al. (1979) introduced the Latin Hypercube Design (LHD) which
is the foundation of almost all design issues in computer experiments

Experimental region is the unit
square [0, 1]2 and a design consists
4 points: Divide each axis [0, 1] into
the 4 equally spaced interval

An arrangement in which each
integer appears exactly once in each
row and in each column

Select a point at random

Chen (CEJE) 09/22/2015 12 / 32



Design of Computer Experiments

Maximin LHD

Not all LHDs are good!

Morris and Mitchell (1995) proposed to find the best LHD by maximizing
the minimum distance between the points
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Design of Computer Experiments

Design for Injection Molding (2D)
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Model of Computer Experiments

Models for Computer Experiments

Computer simulators: Time-consuming

Use the statistical model as a surrogate for the computer simulator

Gaussian Process (GP) Model (Kriging)
View y(x) as a realization of the random function

Y (x) = F(x)Tβ + Z (x),

where β is the unknown constant vector (regression parameter), the
F is a known regression function, and Z (x) is a mean zero,
second-order stationary Gaussian process, and

Cov(Y (x2),Y (x2)) = σ2R(x1 − x2)

Notice that if Z (x) was replaced by independent random errors, this
would be the standard general linear model. However, we have
allowed observations to be correlated.
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Model of Computer Experiments

Predictior

Empirical best linear unbiased predictor (EBLUP)

ŷ(x0) = f T (x0)β̂ + rT0 R̂−1(Y − F β̂),
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Model of Computer Experiments

Prediction of Injection Molding

Here we randomly took 30 points as training data of the injection molding
example and tried to predict the remaining 5 points using GP model.

Remaining Points True Values Pred. Values

r1 .0146 .0152
r2 .0149 .0157
r3 .0171 .0172
r4 .0149 .0149
r5 .0183 .0182

Training points True Values Pred. Values

t1 .0165 .0165
t2 .0169 .0169
t3 .0154 .0154
t4 .0173 .0173
t5 .0176 .0176
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Sensitivity Analysis of Computer Experiments

Sensitivity Analysis

One property of computer experiment is a large number of input
variables

Sensitivity analysis tries to determine how variable the output is to
change in the inputs.

The most popular sensitivity analysis is based on an ANOVA-type
Decompositions (Sobol´, 1990).
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Sensitivity Analysis of Computer Experiments

SA based on ANOVA Decomposition

Overall mean: y0 =
∫

[0,1]d y(x1, . . . , xd)dx1 · · · dxd

Main effect: yi (xi ) =
∫ 1

0 · · ·
∫ 1

0 y(x1, . . . , xd)dx−i − y0

Interaction effect:
yi ,j(xi , xj) =

∫ 1
0 · · ·

∫ 1
0 y(x1, . . . , xd)dx−ij − y0 − yi (xi )− yj(xj)

Total variance V =
∫

[0,1]d y
2(x1, . . . , xd)dx1 · · · dxd − y2

0

Partial variance Vi1,...,is =
∫ 1

0 · · ·
∫ 1

0 y2
i1,...,is

(xi1 , . . . , xis )dxi1 · · · dxis
First-order sensitivity index (Main effect index): Si = Vi/V

Total sensitivity index (Total effect index):
Ti = Si +

∑
j>i Sij +

∑
j<i Sji + · · · S1,2,...,d
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Sensitivity Analysis of Computer Experiments

SA of Injection Molding

Factors Main Effect Index Total Effect Index

Melting time (x1) .0016 .0085
Packing time (x2) .8833 .8960

Packing pressure (x3) .0826 .0875
Cooling time (x4) .0187 .0208

HTC flow (x5) .0001 .0001
HTC pack (x6) .0001 .0001
HTC open (x7) .0001 .0001

Table 1: Sensitivity Indices of Injection Molding

Chen (CEJE) 09/22/2015 22 / 32



Sensitivity Analysis of Computer Experiments

Main Effect Plot of Injection Molding
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Calibration for Computer Experiments

Calibration

Does the computer model adequately represent reality?

19 physical observations of the Injection Molding example

Length
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

V
ol

um
e

0

0.01

0.02

0.03

0.04

0.05

0.06

Sim Data
Phy Obs

Figure 5: Need for calibration
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Calibration for Computer Experiments

Calibration Parameters

4 factors in physical experiments:

Melting time, Packing time, Packing pressure, Cooling time

7 factors in computer experiments:

Melting time, Packing time, Packing pressure, Cooling time, HTC flow,
HTC pack, and HTC open

Calibration parameters:

Calibration parameters are those input variables which can be used to
run computer simulators but are unknown in physical experiments.

HTC flow, HTC pack, and HTC open
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Calibration for Computer Experiments

Bayesian Calibration of Computer Experiments

Physical system observations yp` can be modeled as

Y p
` (x) = µ`(x) + ε`(x), ` = 1, . . . ,m, (1)

where
1 µ`(·) is equal to the mean of a physical system.

When y s` (x , t) is the data from a deterministic computer simulator,
Kennedy and O’Hagan (2001) introduced

δ`(x) ≡ µ`(x)− y s` (x ,φ). (2)

1 φ is the true value of calibration parameters,
2 We model δ`(·) and y s

` (·) as realizations of Gaussian processes U`(·)
and Y s

` (·), so

U`(x) = [Y s
` (x , φ̂)|yp

` , y
s
` ] + [∆`(x)|yp

` , y
s
` ], (3)

3 δ`(·) is unidentifiable from frequentist viewpoint,
4 models δ`(·) based on Bayesian framework.
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Calibration for Computer Experiments

Calibrated Predictor

Using the calibrated predictor to predict 19 physical observations for
output length

Ytrue #10 -3
3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

Y
pr

ed
#10 -3

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4
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Calibration for Computer Experiments

Thanks for your attention !
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Organization CEJC

Organization

Sep. 22nd: Allen, Introduction to Computer Experiments

Oct. 6th

Oct. 20th

Nov. 3rd

Nov. 11th

Dec. 1st. Guest Speaker: Dr. Shan Ba, The Procter & Gamble
Company.
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Organization CEJC
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