# Bayesian calibration of computer models -Kennedy & O'Hagan (2001)

Shivi Vaidyanathan

April 17, 2014

Shivi Vaidyanathan Bayesian calibration of computer models - Kennedy & O'Haga

イロン イヨン イヨン イヨン

æ

# Outline



- Problem definition
- Notation







・ロン ・回と ・ヨン・

#### Calibration

Model Application Refrences Problem definition Notation

# Outline



- Problem definition
- Notation
- 2 Model
- 3 Application



・ロン ・回と ・ヨン・

Problem definition Notation

#### Framework

- Physical Process of interest difficult to obtain observations
- Mathematical Model
  - Deterministic
  - Can be expensive in terms of computing time
- To make useful predictions, need to **calibrate** the computer model with observed data

イロン イヨン イヨン イヨン

Problem definition Notation

# Motivating Example

Dose regime for a new drug (size, frequency and release rate of tablets)

- Pharmacokinetic model -
  - Need to specify rates with which it moves between different body compartments
  - Experiments provide outputs of the pharmacokinetic model such as conc. of drug in blood or urine at certain time points
  - Calibration here : adjusting the unknown rate parameters till the model fits the observed data
- Calibration is using observed data to learn about context specific inputs to the Computer model.

・ロン ・回と ・ヨン ・ヨン

Problem definition Notation

### Calibration Inputs and Variable Inputs

- Distinguish between two types of inputs
  - Calibration inputs : Context specific parameters that are unknown in the true process
    - In Dose Regime example, the rate parameters
  - Variable inputs : All other inputs that vary in the model that can be 'controlled' or observed for the true process
    - In example : Size, frequency, release rate of tablets

イロト イポト イヨト イヨト

Problem definition Notation

### Notation

- Variable inputs  $\mathbf{x} = \{x_1, \dots, x_{q_1}\}$
- Calibration parameters  $\boldsymbol{\theta} = \{\theta_1, \dots, \theta_{q_2}\}$
- Denote **Calibration Inputs** to computer model  $\mathbf{t} = \{t_1, \dots, t_{q_2}\}$
- Computer model response at inputs **x** and **t** by  $\eta(\mathbf{x}, \mathbf{t})$
- True Process  $\zeta(\mathbf{x})$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Calibration

Model Application Refrences Problem definition Notation

### Notation, contd

#### • Data

- Observations  $\mathbf{z} = \{z_1, \dots, z_n\}$
- Can only use a limited number of model runs
- Computer model runs  $\mathbf{y} = \{y_1, \dots, y_N\}$  where  $y_j = \eta(\mathbf{x}_j, \mathbf{t}_j)$
- Full data  $\mathbf{d^T} = \{\mathbf{z^T}, \mathbf{y^T}\}$

# Outline



Notation



#### 3 Application

#### 4 Refrences

#### Data model

Assume that the data relates to the true process

$$z_i = \zeta(\mathbf{x}_i) + e_i$$
(1)  
$$\zeta(\mathbf{x}_i) = \rho \eta(\mathbf{x}_i, \boldsymbol{\theta}) + \delta(\mathbf{x}_i)$$
(2)

Assume

- $e_i$ 's are independent  $N(0, \lambda)$
- $\rho$  unknown regression parameter
- $\delta(.)$  independent of  $\eta(.,.)$

イロト イヨト イヨト イヨト

æ

# **Prior Distributions**

• Prior distributions of the unknown functions  $\eta(.,.)$  and  $\delta(.)$ 

$$\eta(\cdot, \cdot) \sim N(m_1(\cdot, \cdot), c_1((\cdot, \cdot), (\cdot, \cdot)));$$
  

$$m_1(\mathbf{x}, \boldsymbol{\theta}) = h_1(\mathbf{x}, \boldsymbol{\theta})^T \beta_1;$$
  

$$\delta(\cdot) \sim N(m_2(\cdot), c_2((\cdot, \cdot)))$$
  

$$m_2(\mathbf{x}) = h_2(\mathbf{x})^T \beta_2$$
(4)

- Define ψ<sub>1</sub> and ψ<sub>2</sub> as parameters corresponding to covariance functions c<sub>1</sub>((·, ·), (·, ·)) and c<sub>2</sub>((·, ·))
- Note that we specify (3) only when the computer model is expensive to run and hence we need to interpolate η(·, ·) at unseen values of (x, t)

#### • Prior distributions on parameters

$$\pi(\beta_1,\beta_2)\propto 1\tag{5}$$

- Denote  $\phi = \{\rho, \lambda, \psi\}$  and  $\beta = (\beta_1^T, \beta_2^T)^T$
- Complete set of parameters  $\{ heta, eta, \phi \}$

$$\pi(\boldsymbol{\theta},\boldsymbol{\beta},\boldsymbol{\phi}) \propto \pi(\boldsymbol{\theta})\pi(\boldsymbol{\phi}) \tag{6}$$

・ロン ・回と ・ヨン ・ヨン

### Posterior distribution

$$\mathbf{d}^{\mathsf{T}} = \{\mathbf{z}^{\mathsf{T}}, \mathbf{y}^{\mathsf{T}}\}$$
$$z_{i} = \rho \eta(\mathbf{x}_{i}, \boldsymbol{\theta}) + \delta(\mathbf{x}_{i}) + e_{i}, \quad i = 1, \dots, n$$
$$y_{i} = \eta(\mathbf{x}_{i}, \mathbf{t}_{i}), \quad i = 1 \dots, N$$

#### • Can write down data likelihood

$$\mathbf{d}|\boldsymbol{\theta},\boldsymbol{\beta},\boldsymbol{\phi}\sim N(m_d(\boldsymbol{\theta}),V_d(\boldsymbol{\theta})) \tag{7}$$

• Posterior Distribution

$$\pi(\boldsymbol{\theta}, \boldsymbol{\beta}, \boldsymbol{\phi} | \mathbf{d}) \propto \pi(\mathbf{d} | m_d(\boldsymbol{\theta}), V_d(\boldsymbol{\theta})) \pi(\boldsymbol{\theta}) \pi(\boldsymbol{\phi})$$
(8)

イロン イヨン イヨン イヨン

# Estimating hyperparameters

- We have,  $\pi(\theta, \beta, \phi | \mathbf{d})$ , Interested in  $\pi(\theta | \mathbf{d})$
- Integrate out  $oldsymbol{eta}$
- Estimate  $\phi$  in two steps
  - Use **y** to estimate  $\psi_1$  of  $c_1((\cdot, \cdot), (\cdot, \cdot))$
  - Fix  $\psi_1$  and use **z** to estimate  $\rho, \lambda$  and  $\psi_2$  of  $c_2(\cdot, \cdot)$

(ロ) (同) (E) (E) (E)

# Calibration and prediction

- With estimates of  $\phi$  we can then write
- $\pi(oldsymbol{ heta}|oldsymbol{\phi}=\hat{oldsymbol{\phi}}, \mathbf{d})\propto \pi(oldsymbol{ heta}, \hat{oldsymbol{\phi}}|\mathbf{d})$
- Predicting true process at unobserved locations ζ(x) can be done by computing

$$\zeta(\mathbf{x})|\boldsymbol{\theta},\boldsymbol{\phi},\mathbf{d} \tag{9}$$

• We can then make inference on  $\zeta(\mathbf{x})|\hat{\phi}, \mathbf{d}$  using (9) and  $\pi(\boldsymbol{\theta}|\hat{\phi}, \mathbf{d})$ 

イロト イポト イヨト イヨト

# Modeling choices

• Need to specify  $h_1(\mathbf{x}, \mathbf{t})$ ,  $h_2(\mathbf{x}), c_1((\mathbf{x}, \mathbf{t}), (\mathbf{x}', \mathbf{t}'))$  and  $c_2((\mathbf{x}, \mathbf{x}'))$ .

• Set 
$$h_1(\mathbf{x}, \mathbf{t}) = 1$$
 and  $h_2(\mathbf{x}) = 1$ 

- Then,  $\beta_1$  and  $\beta_2$  are scalars that represent an unknown constant mean.
- For the covariance functions, they choose

$$\begin{array}{rcl} c_1((\bm{x},\bm{t}),(\bm{x}',\bm{t}')) &=& \sigma_1^2 \exp\{-(\bm{x}-\bm{x}')^T \bm{\Omega}_x(\bm{x}-\bm{x}')\} \exp\{-(\bm{t}-\bm{t}')^T \bm{\Omega}_t(\bm{t}-\bm{t}')\},\\ c_2(\bm{x},\bm{x}') &=& \sigma_2^2 \exp\{-(\bm{x}-\bm{x}')^T \bm{\Omega}_x^*(\bm{x}-\bm{x}')\}, \end{array}$$

• with diagonal forms for  $\Omega_t$ ,  $\Omega_x$  and  $\Omega_x^*$ 

# Outline



- Problem definition
- Notation







・ロ・ ・ 日・ ・ 田・ ・ 日・

# Gaussian Plume Model(GPM)

Radiological Protection

- GPM used to predict dispersion and subsequent deposition of radioactive material following an accidental release
- Code inputs
  - Atmospheric conditions at release time (wind direction, wind speed, atmospheric stability)
  - Nature of release (source term, source location, release height, release duration, deposition velocity)
- Very cheap to run

・ロト ・回ト ・ヨト ・ヨト

# Example: Tomsk Data

- Accident at the Tomsk-7 chemical plant Russia (1993)
- Deposition of ruthenium 106  $(^{106}Ru)$
- 695 measurements of  $^{106}Ru$  deposition were made at locations shown in figure

(ロ) (同) (E) (E) (E)

#### Tomsk Data

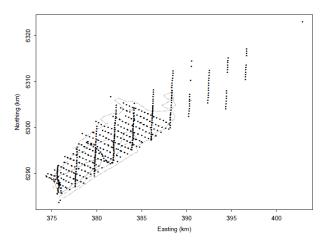


Fig. 1. Tomsk aerial survey of 695 Ru106 deposition measurements, with contours at heights of 11 (solid line), 10 (----) and 9 (---).

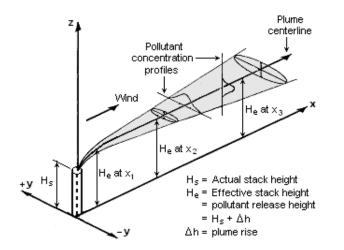
э

# **Prior specifications**

- $\eta(\cdot, \cdot)$  use Gaussian Plume model
- Calibration parameters θ: Logarithm of source term and deposition velocity
- Variable inpute: Two orthogonal linear functions of the northing and easting co-ordinates such that x(0,0) represents the source point and x(x<sub>1</sub>, x<sub>2</sub>) represents point at distance x<sub>1</sub> downwind and distance x<sub>2</sub> from plume center line.
- Assume normal priors for heta
- Prior means obtained from National Radiological Protection Board
- Prior variance set to 5

(ロ) (同) (E) (E) (E)

### Gaussian plume model



イロン 不同と 不同と 不同と Bayesian calibration of computer models - Kennedy & O'Haga

### Model assumptions

- $\bullet$  Since GPM is very cheap to run,  $\eta(\cdot\,,\cdot\,)$  treated as known
- Simplifies model significantly, only covariance function to be specified is c<sub>2</sub>(·, ·)
- Assume product Gaussian form  $\sigma^2 r(\mathbf{x} \mathbf{x}')$

$$r(x - x') = \exp\{-\sum_{j=1}^{q} \omega_j (x_j - x'_j)^2\}.$$

• So the roughness parameters  $\psi_2 = \{\omega_1, \omega_2\}$ 

### Experimental setup

To conduct the analysis,

- Observed data : Use subset of size  $\{n = 10, 15, 20 \text{ and } 25\}$  of the 695 measurements
- Computed posterior means and variances of z(x) for 670 'unobserved' locations
- Accuracy was assessed on the basis of true values at these points.
- Three strategies used
  - Use GP interpolation of the physical observations alone
  - Use Bayesian Calibration technique described here
  - Use Gaussian plum model with 'plug in' parameters. Physical data are not interpolated in anyway, choose 'plug in' estimates by minimizing sum of squared differences between model and data.

### Results

| RMSE       | n=10 | n=15 | n=20 | n=25 |
|------------|------|------|------|------|
| G          | 0 == | 0.50 | 0.00 | 0.50 |
| Strategy 1 | 0.75 | 0.76 | 0.86 | 0.79 |
| Strategy 2 | 0.42 | 0.41 | 0.37 | 0.36 |
| Strategy 3 | 0.82 | 0.79 | 0.76 | 0.66 |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Results contd

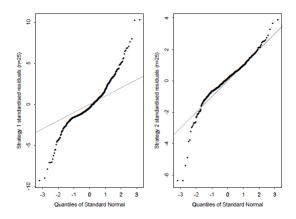


Fig. 2. Quantile-Quantile plots for Strategies 1 and 2 with n = 25

く置⇒

# Outline



- Problem definition
- Notation
- 2 Model

#### 3 Application



#### 

Marc C. Kennedy and Anthony O'Hagan (2001) *Bayesian Calibration of Computer Models. J. R. Statist. Soc. B*, **63**,Part 3. 425-464.

・ロン ・回と ・ヨン・

#### Thank you!

Shivi Vaidyanathan Bayesian calibration of computer models - Kennedy & O'Haga

・ロン ・四 と ・ ヨ と ・ モ と

æ