
Computer Experiments

An Overview



1. We are interested in studying a physical process that 
cannot easily be investigated directly.

Computer experiments typically have the 
following components.



2. We are interested in responses y1, y2,…, yr that can 
be measured on the physical process.  These responses 
are believed to depend on several factors.



3. We describe the physical process by a mathematical 
model implemented with code on a computer .



4. The code produces deterministic outputs y1(x), y2(x), 
…, yr(x) that depend on a set of input variables

We assume the input variables are restricted to some 
subset

X ⊂ "
d

x = (x1, x2, . . . , xd)
!



5. The inputs include factors that are believed to affect 
the responses.  The inputs may also include “tuning 
parameters” related to the code itself (for example, 
mesh size in finite element methods).



6. We use the code to explore or experiment with the 
physical process, i.e., we try different inputs in order to 
assess the effect  of each on the response.  We call this 
a computer experiment.



7. The code runs slowly.  One run may take a day or 
longer.  Thus, we can only observe (experiment with) 
the code a small number of times.  The choice of the 
inputs at which to observe the code  must be done 
carefully.  Monte Carlo methods that require many 
runs of the code are not feasible.



Differences between physical and computer 
experiments

1. The code is deterministic.  There is no random error 
(measurement error).  As a result, no replication is 
needed.  Uncertainty is only due to a lack of 
knowledge about the true nature of the relationship 
between the inputs and the outputs.  The code is a sort 
of “black box.”



2. Because we know the code, we know all the factors 
that affect the output.  Thus, techniques such as 
randomization and blocking are not needed, because 
there is no need to control for the effects of factors that 
affect the response but have not been included among 
the experimental factors.



A Popular Statistical Approach

Observe the code at a relatively small number of runs.  



Fit a statistical model to the output.  



Use the statistical model as a surrogate for the 
computer code in the same spirit as using the computer 
code as a surrogate for the physical process.



Use the statistical model, possibly supplemented with 
additional observations from the code and/or the 
physical process, to achieve stated goals.

Goals might include overall model fit, estimating the 
inputs that optimize the output, determining which 
inputs have the largest effect on the output, calibrating 
the computer code (finding values of tuning parameters 
that bring the code into agreement with physical data).



What sorts of statistical models are popular? 



Gaussian Process Models (GASP models)
(popular in spatial statistics and sometimes 

referred to as kriging models)
View y(x) as a realization of the random function

            Y(x) = ∫0 + ∫1f1(x) +…+ ∫pfp(x) + Z(x)

where Z(x) is a mean zero, second-order stationary 
Gaussian process, and

Cov (Y (x1), Y (x2)) = σ2

ZR(x1 − x2)



Here the ∫i are unknown constants (regression 
pararmeters) and the fi  are known regression functions.

Notice that if  Z(x) was replaced by independent 
random errors, this would be the standard general 
linear model.  However, we have allowed observations 
to be correlated.



What does second-order stationary Gaussian process 
mean?

Second-order means that the mean and variance of Y(x) 
are constant, i.e., do not depend on x.

Stationary means that the covariance (correlation) 
between Y(x1) and Y(x2) is a function only of the 
difference x1 – x2.

Gaussian process means that for any x1, x2, …, xn, the 
joint distribution of Y(x1), Y(x2), …, Y(xn) is 
multivariate normal.



R here is the so-called correlation function.  

1. As presented here, the correlation function tells you 
how correlated two observations Y(x1) and Y(x2) are as 
a function of the difference x1 – x2 between the two 
inputs.  

In practice, people typically use correlation functions 
that only depend on some measure of distance between 
x1 and x2. 



2. Not any old function will do for R.  R must satisfy 
several conditions.  For example,

a. R(0) = 1.

b. For any n values x1, x2,…, xn, the n×n matrix 
whose i, j-th entry is R(xi – xj) must be a valid 
correlation matrix (e.g., nonnegative definite).



Two examples of correlation functions are 

1. The Gaussian correlation function

2. The cubic correlation function

where

and I is the indicator function.
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Another take on the GASP model.

The GASP model, 

         Y(x) = ∫0 + ∫1f1(x) +…+ ∫pfp(x) + Z(x) 

can be viewed as a mixed model in the framework 
of the general linear model, where all observations 
are taken on the same subject, hence correlated.  Z
(x) represents the within subject effect.



Prediction with GASP models

If we observe y(x) at x1, x2,…, xn, and wish to predict 
the value of y(x) at the new input x0, we will use the 
so-called empirical best linear unbiased predictor, or 
EBLUP.

ŷ(x0) = f!

0 β̂ + r!
0 R̂

−1

(Y n
− F β̂)



where
f0 = (1, f1(x0), …, fp(x0))T

F is the n×(p+1) (design) matrix whose i, j-th entry is 
fj-1(xi), for j > 1 and 1 if j = 1.
r0 = (R(x0 - x1), R(x0 - x2), …, R(x0 - xn))T

R  is the n×n matrix whose i, j-th entry is R(xi – xj)
      is the maximum likelihood estimate of R.R̂

ŷ(x0) = f!

0 β̂ + r!
0 R̂

−1

(Y n
− F β̂)



Yn = (y(x1), y(x2),…, y(xn))T

and

is the generalized least squares estimate of ∫.
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−1

F )−1F!R̂
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Some facts.

1. If x0 is one of the inputs x1, x2,…, xn, say x0 = xi, 
then 

i.e., the EBLUP interpolates the data.

ŷ(xi) = y(xi)



2. The EBLUP is a complicated nonlinear function of 
the data because it involves the inverse of the 
maximum likelihood estimate of R.  



3. If we use the simple intercept model as the 
regression part of our model, i.e., we use the model

                               Y(x) = ∫0 + Z(x)

the EBLUP is still an interpolator and does a 
surprisingly good job of fitting observed data.  

In practice, people often just fit this simple form of 
the GASP model.



4. The GASP model and the EBLUP should look 
somewhat familiar.  The GASP model looks like a 
linear model with correlated observations and the 
EBLUP is related to generalized least squares.  In fact, 
this leads to another way of looking at the GASP 
model.



5. The mean squared error for the simple intercept 
EBLUP is estimated by

s
2(x0) = σ̂

2

Z

(

1 − r
!
0 R̂

−1

r0 +
(1 − 1

!
n R̂

−1

r0)2

1 − 1
!
n R̂

−1

1n

)

where      is the maximum likelihood estimate ofσ̂
2

Z σ
2

Z



If you want to try out fitting Gaussian Process models, 
look at the latest version of JMP (JMP 9).  This is 
available for download from the Office of the Chief 
Information Officer.  

You can also use home grown code.  Several students 
have written Matlab programs for fitting these models.  

 There is also the MPERK program (Matlab version) in 
the comp_exp directory on the server tibia.
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Questions?




