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The Plan

“Data assimilation refers to the quantitative methods by which the
information in dynamic models and data are combined to provide
estimates of the state and its key parameters”

This discussion will focus specifically on the use of data assimilation for
inference and prediction for nonlinear dynamic systems models.
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The Model

Interested in inference and prediction for large-scale spatio-temporal
models defined implicitly as partial differential equations (PDE).

An example from biogeochemistry (BGC):

∂x (i)

∂t
+ u · ∇x (i) −∇ ·

(
κ∇x (i)

)
= fi (x , θ, γ) , i = 1, . . . ,m.

where

• x = [x (1), · · · , x (m)]> – 3-d spatial field

• u – 3-d current field

• κ – matrix of diffusion coefficients

• fi – governing equations (photosynthesis, predation, etc.)

• θ – biological parameters (may be high dimensional)

• γ – forcing fields (light, temperature, etc.)
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Global Ocean Circulation Model: SST snapshot   
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The Model

What we need to keep in mind about these models

Issues:

• The BGC parameters, θ, are uncertain and vary by season etc.

• The BGC governing equations (RHS) are uncertain (they are not
perfect models of reality)

• Ocean circulation models (LHS) are uncertain (spatial resolution
limitations, etc.)

• Forcing fields, γ, are uncertain

• No closed form expression for the states, x , means we make inference
on a discrete approximation of the PDE and not the PDE itself

(Stochastic models?)
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The Data

Data, yt , t = 1, . . . ,T for these applications can be quite complex

Examples:

• Indirect measurements of x at different locations and water depths
(usually systematic sampling)

• Tracer data

• Remote sensing

Issues:

• Uncertain error models yt = h(xt , θ, εt)

• Indirect observations

• Combining different data types
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Measurements of the Physical Ocean	
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Measurements  of Ocean Biology	
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Inference and Prediction

We are interested in the joint distribution of the state and the
parameters conditional on the observations:

[x1:T , θ | y1:T ]

Hierarchical model:

[x1:T , θ | y1:T ] ∝ [y1:T | x1:T , θ]︸ ︷︷ ︸
data model

[x1:T | θ]︸ ︷︷ ︸
PDE forward model

[θ]︸︷︷︸
prior
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Data Assimilation

Two main ways we could do (usually approximate) inference and
prediction on x1:T and θ

1 Variational approaches (optimization based, “fast”, MAP
estimation)

2 Sampling based methods (sampling from exact or approximate
target posterior, “slow”, posterior uncertainty)
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Variational Methods

Optimization problem of the following objective:

J =
T∑
t=1

||yt − h(xt , θ, εt)||2Σ−1
yt−h(xt ,θ,εt )

with respect to θ and subject to the constraint

xt = d(xt−1, θ, γt),

which is a discretized transition model for the state (approximate PDE
solution obtained using numerical time-stepping from the previously
estimated state xt−1).
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Variational Methods

Examples:

Algorithms include 3DVAR, 4DVAR

Issues:

Minimization of J is challenging and computationally expensive

• objective multimodality

• θ has high dimension

• discretization method used to obtain transitions of x from one time
point to the other are computationally expensive
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Sampling-based Estimation

The target density for the DA problem is [x1:T , θ | y1:T ]

Examples:

MCMC, particle filter, ensemble Kalman filter

Issues:

• MCMC targets the posterior directly, but it is slow

• Particle filtering can be faster. Iterates between two steps:
prediction xt | y1:t−1, θ and measurement update xt | y1:t , θ but does
not incorporate prior information on θ

• Kalman filter is exact for linear, additive Gaussian models, but
targets a rough approximation of the posterior when the model is
nonlinear
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time 

measurement 

 nowcast    forecast 

time = t-1 time = t 

prediction 

 nowcast 
[xt−1,θ | y1:t−1]

xt = d(xt−1,θ ) +ν t  yt

[xt ,θ | y1:t−1] [xt ,θ | y1:t ]

-  Recursive estimation of system state through time  

-  Forecast and Measurement steps 

Single stage transition of system from time t-1 to time t  
Sequential Methods for DA 
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Approaches for Parameter Estimation  

xt=
xt
θt

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1. State Augmentation: append parameters to the state 

Can use ‘standard’ sequential MC methods with iterative filtering 

2. Likelihood Methods: Use sample based likelihoods 

[y1:T |θ ] = L(θ | y1:T ) = [yt | xt,θ ][xt | y1:t−1,θ ]dxt∫
t=1

T

∏

3.	
  Bayesian	
  Hierarchical: particle MCMC, SMC^2  
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Sample Based Likelihood Surface 
L(θ | y1:T ) ≈

1
n

[yt | xt|t−1
(i) ,θ ]

i=1

n∑( )
t=1

T

∏
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Challenges

The paper identifies a number of open problems:

• High dimensional states: xt (often m > 106); variational methods
and Kalman filter are used, but rely on approximation

• Numerical resolution limits the number of ensemble sizes (usually
< 1000); surrogate models and emulators are often used

• Most DA techniques do not incorporate prior information on θ,
which can be very informative
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Challenges

The paper identifies a number of open problems:

• Dynamic model complexity and model selection

• Can we obtain useful information from fitting a nonlinear model
with so many sources of uncertainty?

• Specifying the data model: this modeling step is often neglected in
BGC applications

• Sampling design
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