Errata Sheet

The Design and Analysis of Computer Experiments

by
Thomas J. Santner, Brian Williams, and William Notz
pg. 2 (line -3): "a computer" should be "computer" (thanks to D. Steinberg)
pg. 11 (in caption to Figure 1.6): "Subsection 1.2.1" should be "Subsection 1.2.3" (thanks to D. Steinberg)
pg. 12 (line -1): http://www.stat.ohio.edu/~comp_exp should be
http://www.stat.ohio-state.edu/~comp_exp
pg. 30 (in caption to Figure 2.2): "all points on the circle have the same correlation" should be "all points on the circle have the same correlation with the origin" (with thanks to D. Steinberg)
pg. 49 (line 2): "naíve" should be "naive"
pg. 52 (line 14, begins with Proof:): "Fix an arbitrary unbiased predictor" should be "Fix an arbitrary predictor"
pg. 54 (1 line above Equation 3.2.10): "Theorems 3.2.1 and B.1.2" should be "Theorem 3.2.1 and Lemma
B.1.2"
pg. 54 (7 lines after Equation 3.2.10): "based the" should be "based on the" (with thanks to D. Steinberg)
pg. 54 (the line after Equation 3.2.11): "minimum MSPE of" should be "minimum MSPE predictor of" (with thanks to E. Leatherman)
pg. 58 (Equation 3.2.14) $E\left\{Y_{1}^{2} / 12\right\}$ should be $E\left\{Y_{1}^{4} / 12\right\}$ (with thanks to E. Leatherman)
pg. 62 (line above Equation 3.3.2): "has" should be "have" (with thanks to D. Steinberg)
pg. 67 Equation (3.3.16): should be

$$
(n-p) \log \left(\widetilde{\sigma_{z}^{2}}\right)+\log (\operatorname{det}(\boldsymbol{R}(\boldsymbol{\psi})))+\log \left(\operatorname{det}\left(\boldsymbol{F}^{\top}(\boldsymbol{R}(\boldsymbol{\psi}))^{-1} \boldsymbol{F}\right)\right)
$$

pg. 68 Equation (3.3.17): $=$ should be \equiv (with thanks to Peter Marcy)
pg. 68, line above Equation (3.3.18): "The minimum MSPE predictor is by" should be "Thus the minimum MSPE predictor is" (with thanks to Erin Leatherman)
pg. 71 (line 2): "eight" should be "six" (with thanks to E. Leatherman, Dex Whittinghill)
pg. 73 (line 8): "effect" should be "affect" (with thanks to D. Steinberg)
pg. 76 t14: Change "should be not be" to " should not be"
pg. 84 (line -2): "more frequently for large n" should be "less frequently for large n " (with thanks to D. Steinberg)
pg. 88: All inverses mentioned in Theorem 4.1.1 must exist in order for the conclusion to hold. (with thanks to D. Steinberg)
pg. 89 Equation (4.1.7): $[\boldsymbol{\beta}] \sim 1$ should be $[\boldsymbol{\beta}] \propto 1$ (with thanks to Peter Marcy)
pg. 89 (line -2): "derive posterior" should be "derive the posterior" (with thanks to D. Steinberg)
pg. 93: (final displayed equation): $\sigma_{0 \mid n}^{2}\left(\boldsymbol{x}_{0}\right)$ should be $\sigma_{0 \mid n}\left(\boldsymbol{x}_{0}\right)$ (with thanks to Peter Marcy) pg. 104: (third line below first displayed equation): $y_{1+m}(\cdot)=y^{m}(\cdot)$ should be $y_{m}(\cdot)=y^{d}(\cdot)$ (with thanks to Peter Marcy)
pg. 104 (2nd line above Equation (4.2.6)): $\operatorname{Cov}\left\{Y\left(\boldsymbol{x}^{1}\right), Y_{(j)}\left(\boldsymbol{x}^{2}\right)\right\}=R\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}\right)$ should be $\operatorname{Cov}\left\{Y\left(\boldsymbol{x}^{1}\right), Y_{(j)}\left(\boldsymbol{x}^{2}\right)\right\}=\sigma_{Z}^{2} R\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}\right)$ (with thanks to Peter Marcy)
pg. 104 Equation (4.2.6): $\frac{\partial R\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}\right)}{\partial \boldsymbol{x}_{j}^{2}}$ should be $\frac{\partial R\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}\right)}{\partial x_{j}^{2}}$
pg. 104 Equation (4.2.7): $\frac{\partial^{2} R\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}\right)}{\partial \boldsymbol{x}_{i}^{1} \partial \boldsymbol{x}_{j}^{2}}$ should be $\frac{\partial^{2} R\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}\right)}{\partial x_{i}^{1} \partial x_{j}^{2}}$
pg. 105-106 :

$$
\left(\begin{array}{ccccc}
1 & \boldsymbol{r}_{1}^{\top} & \tau_{2} \boldsymbol{r}_{12}^{\top} & \cdots & \tau_{m} \boldsymbol{r}_{1 m}^{\top} \\
\boldsymbol{r}_{1} & \boldsymbol{R}_{1} & \tau_{2} \boldsymbol{R}_{12} & \cdots & \tau_{m} \boldsymbol{R}_{1 m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\tau_{m} \boldsymbol{r}_{1 m} & \tau_{m} \boldsymbol{R}_{1 m}^{\top} & \tau_{m} \boldsymbol{R}_{2 m}^{\top} & \cdots & \tau_{m}^{2} \boldsymbol{R}_{m}
\end{array}\right)
$$

respectively, where $\tau_{i}=\sigma_{i} / \sigma_{1}, 2 \leq i \leq m$,
should be

$$
\left(\begin{array}{ccccc}
1 & \boldsymbol{r}_{1}^{\top} & \tau_{2} \boldsymbol{r}_{12}^{\top} & \cdots & \tau_{m} \boldsymbol{r}_{1 m}^{\top} \\
\boldsymbol{r}_{1} & \boldsymbol{R}_{1} & \tau_{2} \boldsymbol{R}_{12} & \cdots & \tau_{m} \boldsymbol{R}_{1 m} \\
\tau_{2} \boldsymbol{r}_{12} & \tau_{2} \boldsymbol{R}_{12} & \tau_{2}^{2} \boldsymbol{R}_{2} & \tau_{2} \tau_{3} \boldsymbol{R}_{23} & \tau_{2} \tau_{m} \boldsymbol{R}_{2 m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\tau_{m} \boldsymbol{r}_{1 m} & \tau_{m} \boldsymbol{R}_{1 m}^{\top} & \tau_{2} \tau_{m} \boldsymbol{R}_{2 m}^{\top} & \cdots & \tau_{m}^{2} \boldsymbol{R}_{m}
\end{array}\right)
$$

respectively, where $\tau_{i}=\sigma_{i} / \sigma_{1}, 2 \leq i \leq m$ so that each $\boldsymbol{R}_{i j}$ with $2 \leq i \neq j \leq m$ is multiplied by $\tau_{i} \tau_{j}$, and pg. 106 (2nd line above Equation (4.2.6)): " \boldsymbol{F} and $\boldsymbol{\beta}$ are as in (4.29)" should be " \boldsymbol{F} is the matrix in (4.2.9) with the first row omitted" (with thanks to Peter Marcy)
pg. 150 (line 3): "nonredundancy" should be "redundancy" (with thanks to D. Steinberg)
pg. 266 (t7): Report LA-UR-00-2915 Sandia Laboratories should be Report LA-UR-00-2915 Los Alamos National Laboratory
pg. 266 (b11): Sacks, J. Schiller, S. B. and Welch, W. J. (1992) should be Sacks, J. Schiller, S. B. and Welch, W. J. (1989) (with thanks to Leo Bastos)

January 24, 2017

