ELASTIC FUNCTIONAL DATA ANALYSIS

Anuj Srivastava

Department of Statistics, Florida State University

Outline

(1) Past Summary and Limitations
(2) Formalization of Registration Problem
(3) Fisher-Rao Metric and Square-Root Representations
4. Modeling Functional Data
(5) Dynamic Programming

Outline

(1) Past Summary and Limitations
(2) Formalization of Registration Problem

3 Fisher-Rao Metric and Square-Root Representations
4 Modeling Functional Data
(5) Dynamic Programming

- Focused on $\mathbb{L}^{2}([0,1], \mathbb{R})$, the set of squared-integrable functions on interval $[0,1]$, with the Hilbert structure give by the inner product $\int_{0}^{1} f_{1}(t) f_{2}(t) d t$, leading to the distance:

$$
\left\|f_{1}-f_{2}\right\|=\sqrt{\left\langle f_{1}-f_{2}, f_{1}-f_{2}\right\rangle} .
$$

- We can perform several types of analysis using this structure.
- Given several observations, we can compute the mean and the covariance of the fitted functions.
- We can perform fPCA and study the modes of variability.
- We can impose some statistical models on the function space using finite-dimensional approximations.
- Most of the FDA literature is centered around the \mathbb{L}^{2} norm. But there are some major problems with this choice.
- Distances (under \mathbb{L}^{2} metric) are larger than they should be.

- Misalignment (or phase variability) can be incorrectly interpreted as actual (amplitude) variability.
- Recall that the average under \mathbb{L}^{2} norm is given by:

$$
\bar{f}(t)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(t)
$$

- Function averages under the \mathbb{L}^{2} norm are not representative!

Individual functions are all bimodal and the average is multimodal!

- In \bar{f}, the geometric features (peaks and valleys) are smoothed out. They are interpretable attributes in many situations and they need to be preserved
$n=50$ functions, $f_{i}(t)=f_{0}\left(\gamma_{i}(t)\right), \gamma_{i}$ s are random time warps.

- \mathbb{L}^{2} norm uses vertical registration:

$$
\left\|f_{1}-f_{2}\right\|^{2}=\int_{0}^{1}\left(f_{1}(t)-f_{2}(t)\right)^{2} d t
$$

For each $t, f_{1}(t)$ is being compared with $f_{2}(t)$.

- The geodesic path (interpreted as the deformation between f_{1} and f_{2}) is unnatural as geometric features (peaks and valleys) are lost or created arbitrarily.
- What if the variability is more naturally horizontal:

- Or, maybe a combination of vertical and horizontal:

- The question is: How can we detect the compute and decompose the differences into horizontal and vertical components.

Outline

(9) Past Summary and Limitations
(2) Formalization of Registration Problem
(3) Fisher-Rao Metric and Square-Root Representations

4 Modeling Functional Data
(5) Dynamic Programming

- The main issue:

One of the most important challenge in functional and shape data analysis is registration

- Several other names: matching/correspondence/alignment/....
- Most of the metrics used in data analysis implicitly or explicitly assume a given registration.
- Example: sample mean $\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}, \mathbf{x}_{i} \in \mathbb{R}^{d}$. This assumes that the $j^{\text {th }}$ elements of \mathbf{x}_{i} are matched.
- One should solve for optimal registration in the analysis rather than take the data for granted.
(For the time being restrict to scalar functions on a unit interval.
$D=[0,1], k=1$.
- How to perform registration?
- For functional objects of the type $f:[0,1] \rightarrow \mathbb{R}$, registration is essentially a diffeomorphic deformation of the domain.
- Let $\gamma:[0,1] \rightarrow[0,1]$ be a diffeomorphism. Then, then $f_{1}(t)$ is said to be registered to $f_{2}(\gamma(t))$. Composition by γ is called time warping.
- How to define and find optimal γ ? The warping γ should be chosen so that the geometric features (peaks and valleys) are well aligned.

- The deformation $t \mapsto \gamma(t)$ is called the phase variability and the residual $f_{1}(t)-f_{2}(\gamma(t))$ is called the amplitude or shape variability.

Desired Properties

Problem Setup:

- Let $f_{1}, f_{2}:[0,1] \rightarrow \mathbb{R}$ be two functions.
- Γ is the group of orientation-preserving diffeomorphisms of $[0,1]$ to itself. Γ is a group with composition. $\gamma_{i d}$ is the identity element.
- Question: What should be the objective function: $E\left(f_{1}, f_{2} \circ \gamma\right)$, for defining optimal registration?
Desired Properties of E :
- If $\hat{\gamma}$ registers f_{1} to f_{2}, then $\hat{\gamma}^{-1}$ should register f_{2} to f_{1}.
- If $f_{2}=c f_{1}$ for a positive constant c, then $\hat{\gamma}=\gamma_{i d}$. Shapes are more important than heights.
- It will be nice to have $\min _{\gamma} E\left(f_{1}, f_{2} \circ \gamma\right)$ as a proper metric.

Current Registration Formulation

- A natural quantity to define E for optimal registration is the \mathbb{L}^{2} norm, i.e.

$$
\hat{\gamma}=\arg \inf _{\gamma \in \Gamma}\left(\left\|f_{1}-f_{2} \circ \gamma\right\|^{2}\right) .
$$

- However, this choice is degenerate - pinching effect!

Current Registration Formulation

- Common solution - add penalty:

$$
\hat{\gamma}=\arg \inf _{\gamma \in \Gamma}\left(\left\|f_{1}-f_{2} \circ \gamma\right\|^{2}+\lambda \mathcal{R}(\gamma)\right) .
$$

- Effectively reducing the search space, not really solving the problem.
- Example: Using the first order penality $\mathcal{R}=\int_{D}|\dot{\gamma}(t)|^{2} d t$.

- One can use other penalty terms instead.
- The right balance between alignment and penalty?

Alternative Method

- Asymmetry: Discussed earlier

$$
\inf _{\gamma}\left(\left\|f_{1}-f_{2} \circ \gamma\right\|^{2}++\lambda \mathcal{R}(\gamma)\right) \neq \inf _{\gamma}\left(\left\|f_{1} \circ \gamma-f_{2}\right\|^{2}++\lambda \mathcal{R}(\gamma)\right)
$$

- Triangle inequality: The following does not hold -

$$
\begin{aligned}
\left.\inf _{\gamma}\left(\left\|f_{1}-f_{3} \circ \gamma\right\|^{2}+\lambda \mathcal{R}(\gamma)\right)\right) & \leq \inf _{\gamma}\left(\left\|f_{1} \circ \gamma-f_{2}\right\|^{2}+\lambda \mathcal{R}(\gamma)\right) \\
& +\inf _{\gamma}\left(\left\|f_{2} \circ \gamma-f_{3}\right\|^{2}+\lambda \mathcal{R}(\gamma)\right)
\end{aligned}
$$

- Most fundamental issue: Not invariant to warping

$$
\|f\| \neq\|f \circ \gamma\|
$$

The norm $\|f \circ \gamma\|$ can be manipulated to have a large range of values, from $\min (|f|)$ to $\max (|f|)$ on $[0,1]$.

- Registration is preserved under identical warping! [$\left.f_{1}(t), f_{2}(t)\right]$ are registered before warping, and $\left[f_{1}(\gamma(t)), f_{2}(\gamma(t))\right]$ are registered after warping.

- The metric or objective function for measuring registration should also be invariant to identical warping.
- \mathbb{L}^{2} norm is not invariant to identical warping.

Desired Properties for Objective Function

We want to use a cost function $d\left(f_{1}, f_{2}\right)$ for alignment, so that:

- Invariance: $d\left(f_{1}, f_{2}\right)=d\left(f_{1} \circ \gamma, f_{2} \circ \gamma\right)$, for all γ. Technically, the action of Γ on \mathcal{F} is by isometries.
- Registration problem can be:

$$
\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right)=\underset{\gamma_{1}, \gamma_{2} \in \tilde{\Gamma}}{\operatorname{arginf}} d\left(f_{1} \circ \gamma_{1}, f_{2} \circ \gamma_{2}\right) .
$$

$\tilde{\Gamma}$ is a closure of Γ to make orbits closed set.

- Symmetry will hold by definition.
- Triangle inequality: Let $d_{s}\left(f_{1}, f_{2}\right)=\inf _{\gamma_{1}, \gamma_{2}} d\left(f_{1} \circ \gamma_{1}, f_{2} \circ \gamma_{2}\right)$. Then, we want:

$$
d_{s}\left(f_{1}, f_{3}\right) \leq d_{s}\left(f_{1}, f_{2}\right)+d_{s}\left(f_{2}, f_{3}\right) .
$$

- We want d_{s} to be proper metric so that we can use d_{s} for ensuing statistical analysis.

Outline

Past Summary and Limitations(2) Formalization of Registration Problem
(3) Fisher-Rao Metric and Square-Root Representations

4 Modeling Functional Data
(5) Dynamic Programming

- There exists a distance that satisfies all these properties. It is called the Fisher-Rao Distance:

$$
d_{F R}\left(f_{1}, f_{2}\right)=d_{F R}\left(f_{1} \circ \gamma, f_{2} \circ \gamma\right), \text { for all } f_{1}, f_{2} \in \mathcal{F}, \gamma \in \Gamma .
$$

For many years, this nice invariant property was well known in the literature. The question was: How to compute $d_{F R}$? The definition was to difficult to lead to a simple expression.

- Klassen introduced the SRVF in 2007. (Has similarities to the complex square-root of Younes 1999.) Define a new mathematical representation called square-root velocity function (SRVF):

$$
q(t) \equiv\left\{\begin{array}{cc}
\frac{\dot{f}(t)}{\sqrt{|\dot{f}(t)|}} & |\dot{f}(t)| \neq 0 \\
0 & |\dot{f}(t)|=0
\end{array}\right.
$$

$\left(f:[0,1] \rightarrow \mathbb{R}^{n}, q:[0,1] \rightarrow \mathbb{R}^{n}\right)$

- SRVF is invertible up to a constant: $f(t)=f(0)+\int_{0}^{t}|q(s)| q(s) d s$.
- Under SRVF, the Fisher-Rao distance simplifies: $d_{F R}\left(f_{1}, f_{2}\right)=\left\|q_{1}-q_{2}\right\|$.
- The SRVF of $(f \circ \gamma)$ is $(q \circ \gamma) \sqrt{\dot{\gamma}}$. Just by chain rule. We will denote $(q, \gamma)=(q \circ \gamma) \sqrt{\dot{\gamma}}$. Commutative Diagram:

- Lemma: This distance satisfies: $d_{F R}\left(f_{1}, f_{2}\right)=d_{F R}\left(f_{1} \circ \gamma, f_{2} \circ \gamma\right)$ We need to show that $\left\|\left(q_{1} \circ \gamma\right) \sqrt{\dot{\gamma}}-\left(q_{2} \circ \gamma\right) \sqrt{\dot{\gamma}}\right\|=\left\|q_{1}-q_{2}\right\|$.

$$
\begin{aligned}
\left\|\left(q_{1}, \gamma\right)-\left(q_{2}, \gamma\right)\right\|^{2} & =\int_{0}^{1}\left(q_{1}(\gamma(t)) \sqrt{\dot{\gamma}(t)}-q_{2}(\gamma(t)) \sqrt{\dot{\gamma}(t)}\right)^{2} d t \\
& =\int_{0}^{1}\left(q_{1}(\gamma(t))-q_{2}(\gamma(t))\right)^{2} \dot{\gamma}(t) d t=\left\|q_{1}-q_{2}\right\|^{2} . \square
\end{aligned}
$$

- Corollary: For any $q \in \mathbb{L}^{2}$ and $\gamma \in \Gamma_{l}$, we have $\|q\|=\|(q, \gamma)\|$. This group action is norm preserving, like a rotation. Can't have pinching!
- Registration Solution:

$$
\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right)=\operatorname{arginf}_{\gamma_{1}, \gamma_{2}}\left\|\left(q_{1} \circ \gamma_{1}\right) \sqrt{\dot{\gamma}_{1}}-\left(q_{2} \circ \gamma_{2}\right) \sqrt{\dot{\gamma}_{2}}\right\|
$$

One approximates this solution with:

$$
\gamma^{*}=\underset{\gamma}{\operatorname{arginf}}\left\|q_{1}-\left(q_{2} \circ \gamma\right) \sqrt{\dot{\gamma}}\right\| .
$$

This is solved using dynamic programming.

- Where does SRVF come from?
- Fisher-Rao Riemannian Metric: For functions, there is a F-R metric

$$
\left\langle\left\langle\delta f_{1}, \delta f_{2}\right\rangle\right\rangle_{f}=\int_{0}^{1} \dot{\delta} f_{1}(t) \dot{\delta} f_{2}(t) \frac{1}{\dot{f}(t)} d t .
$$

- Under F-R metric, the time warping action is by Isometry:

$$
\left\langle\left\langle\delta f_{1}, \delta f_{2}\right\rangle\right\rangle_{f}=\left\langle\left\langle\delta f_{1} \circ \gamma, \delta f_{2} \circ \gamma\right\rangle\right\rangle_{\text {for }} .
$$

(Note this is different from the F-R metric for pdfs, but same as the F-R for cdfa.)

- Under the mapping $f \mapsto q$, Fisher-Rao metric transforms to the \mathbb{L}^{2} metric:

$$
\left\langle\left\langle\delta f_{1}, \delta f_{2}\right\rangle\right\rangle_{f}=\left\langle\delta q_{1}, \delta q_{2}\right\rangle
$$

Fisher-Rao metric $\quad \mathbb{L}^{2}$ inner product

SRVF Mapping

Nice isometric, bijective mapping from \mathcal{F} to \mathbb{L}^{2}

Function Space \mathcal{F} Absolutely continuous functions	SRVF Space \mathbb{L}^{2} Square-integrable functions		
1 Functions and tangents f, and $\delta f_{1}, \delta f_{2} \in T_{f}(\mathcal{F})$	Functions and tangents $q, \delta q_{1}, \delta q_{2} \in \mathbb{L}^{2}$		
2 Fisher-Rao Inner Product $\int_{0}^{1} \dot{\delta} f_{1}(t) \dot{\delta} \dot{f}_{2}(t) \frac{1}{f(t)} d t$	\mathbb{L}^{2} inner product $\int_{0}^{1} \delta q_{1}(t) \delta q_{2}(t) d t$		
3 Fisher-Rao Distance $d_{F R}\left(f_{1}, f_{2}\right)=? ? ?$	$\begin{aligned} & \mathbb{L}^{2} \text { norm } \\ & \mathbb{L}^{2} \text { norm: }\left\\|q_{1}-q_{2}\right\\| \\ & \hline \end{aligned}$		
4 Geodesic Under Fisher-Rao ??	Straight line $\tau \mapsto\left((1-\tau) q_{1}+\tau q_{2}\right)$		
5 Mean of functions under $d_{F R}$??	Cross-Section Mean $\frac{1}{n} \sum_{i=1}^{n} q_{i}$		
6. Registration under $d_{F R}$ $\inf _{\gamma} d_{F R}\left(f_{1}, f_{2} \circ \gamma\right)$	Registration under \mathbb{L}^{2} $\left.\inf _{\gamma} \\| q_{1}-\left(q_{2} \circ \gamma\right) \sqrt{\dot{\gamma}}\right) \\|$		
7 FPCA analysis under $d_{F R}$	FPCA analysis under \mathbb{L}^{2} norm		

Any item on the left can be accomplished by computing the corresponding item on the right and bringing back the results.

Liquid chromatography - Mass spectrometry data

- Align each function to a template. The template can be the sample mean but under what metric?
- Mean under the quotient space metric:

$$
\bar{q}=\underset{q \in \mathbb{L}^{2}}{\operatorname{arginf}}\left(\inf _{\gamma_{i}}\left\|q-\left(q_{i}, \gamma_{i}\right)\right\|^{2}\right)
$$

- Iterative procedure:

C Initialize the mean μ.
(2) Align each q_{i} s to the mean using pairwise alignment to obtain $\hat{\gamma}_{i}=\operatorname{arginf}_{\gamma_{i}}\left\|q-\left(q_{i}, \gamma_{i}\right)\right\|^{2}$, and set $\tilde{q}_{i}=\left(q_{i}, \hat{\gamma}_{i}\right)$.
(3) Update mean using $\mu=\frac{1}{n} \sum_{i=1}^{n} \tilde{q}_{i}$.
((Check for convergence. If not converged, go to step 2 .

- One can view this separation $f_{i}=\left(\tilde{f}_{i}, \gamma_{i}\right)$, as being analogous to polar coordinates of a vector $v=(r, \theta)$.
- In most cases, one of the two components is more useful than the other. So, separation helps put different weights on these components.

Multiple Registration: Examples

Matlab Code - Demo

Alignment After Transformation

Sometimes it is useful to transform the data before applying alignment procedure. Some of these transformations are: $\left|f_{i}(t)\right|, \dot{f}_{i}(t)$, $\log \left|f_{i}(t)\right|$, etc.

- Absolute Value: When optimal points are to be aligned (irrespective of them being peaks or valleys).

Alignment After Transformation

- Derivatives: When aligning montonoic functions

Penalized Elastic Alignment

- If we want to control the elasticity, we can also add a roughness penalty. $\inf _{\gamma \in \Gamma}\left(\left\|q_{1}-\left(q_{2}, \gamma\right)\right\|^{2}+\lambda \mathcal{R}(\gamma)\right)^{1 / 2}$
- For example, using a first order penalty: $\mathcal{R}(\gamma)=\|1-\sqrt{\dot{\gamma}}\|^{2}$.

- We loose some nice mathematical properties - no longer have a metric in the quotient space.

Outline

Past Summary and Limitations

2 Formalization of Registration Problem
(3) Fisher-Rao Metric and Square-Root Representations

4 Modeling Functional Data
(5) Dynamic Programming

How about modeling functional variables using elastic representations?

- Focus on FPCA based dimension reduction and modeling.
- Sequential Approach: First separate the amplitude and phase components of the daya, then perform FPCA for each component separately.
- Joint Approach: Use a model that performs alignment and FPCA (of amplitudes) simultaneously.
(1) Separate phase and amplitude components. The input data is $\left\{f_{i}\right\}$ of $\left\{q_{i}\right\}$, and the output is the amplitude $\left\{\tilde{q}_{i}\right\}$ and phase $\left\{\gamma_{i}\right\}$.
(2) Perform fPCA of amplitudes $\left\{\tilde{q}_{i}\right\}$. Obtain the dominant basis function $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots\right\}$.
(3) Perform fPCA of phases: Convert phases into tangent vectors: $v_{i}=\exp _{1}^{-1}\left(\sqrt{\dot{\gamma}_{i}}\right)$. Perform fPCA of $\left\{v_{i}\right\}$ and obtain the dominant basis $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots,\right\}$.
(9) Jointly model the coefficients of phase and amplitude components (and also the starting points $\left.\left\{f_{i}(0)\right\}\right)$.
(3) Generative model: Randomly generate an amplitude $[q]$ and a phase γ. Form the function f and compose $f \circ \gamma$. This is a random realization from the model.

Example 1

Example 2

Assuming that the observations follow the model:

$$
\begin{aligned}
q_{i} & =\operatorname{SRVF}\left(f_{i}\right) \\
\left(q_{i}, \gamma_{i}\right) & \equiv q_{i}\left(\gamma_{i}(t)\right) \sqrt{\dot{\gamma}_{i}(t)}=\mu(t)+\sum_{j=1}^{\infty} c_{i, j} b_{j}(t)
\end{aligned}
$$

where:

- $\mu(t)$ is the expected value of $q_{i}(t)$,
- $\left\{\gamma_{i}\right\}$ are unknown time warpings,
- $\left\{b_{j}\right\}$ form an orthonormal basis of \mathbb{L}^{2}, and
- $c_{i, j} \in \mathbb{R}$ are coefficients of q_{i} with respect to $\left\{b_{j}\right\}$. In order to ensure that μ is the mean of (q_{i}, γ_{i}), we impose the condition that the sample mean of $\left\{c_{., j}\right\}$ is zero.

Elastic FPCA

Solution:

$$
(\hat{\mu}, \hat{b})=\underset{\mu,\left\{b_{j}\right\}}{\operatorname{argmin}}\left(\sum_{i=1}^{n} \underset{\gamma \in \Gamma}{\operatorname{argmin}}\left\|\left(q_{i}, \gamma\right)-\mu-\sum_{j=1}^{J} c_{i, j} b_{j}\right\|^{2}\right),
$$

and set $\hat{c}_{i, j}=\left\langle\left(q_{i}, \gamma_{i}^{*}\right)-\mu, \hat{b}_{j}\right\rangle$.

- Estimate μ using sample mean:

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n}\left(q_{i}, \gamma_{i}^{*}\right) .
$$

- Estimate $\left\{b_{j}\right\}$ using PCA.

Elastic FPCA: Example

Outline

(9) Past Summary and Limitations
(2) Formalization of Registration Problem
(3) Fisher-Rao Metric and Square-Root Representations

4 Modeling Functional Data
(5) Dynamic Programming

- An exact algorithm for solving some types of optimization problems.
- Idea: Simplify a complicated problem by breaking it down into a sequence of simpler sub-problems in a recursive manner. Can only be done if the cost function is additive over the search space.
- Principle of DP:

If the shortest path from Boston to LA passes through Chicago, then the shortest path from Chicago to LA will be a piece of that shortest path.

- Let $f, g:[0,1] \rightarrow \mathbb{R}$ be two given functions and we want to solve for:

$$
\begin{equation*}
\hat{\gamma}=\underset{\gamma \in \Gamma}{\operatorname{argmin}}\left(\int_{0}^{1}|f(t)-g(\gamma(t))|^{2} d t\right) . \tag{1}
\end{equation*}
$$

- To decompose the large problem into several subproblems, define a partial cost function:

$$
E(s, t ; \gamma)=\int_{s}^{t}|f(\tau)-g(\gamma(\tau))|^{2} d \tau
$$

so that our original cost function is simply $E(0,1 ; \gamma)$.

Dynamic Programming Algorithm

- Define a uniform partition $G_{n}=\{1 / n, 2 / n, \ldots,(n-1) / n, 1\}$ of $[0,1]$ and form a grid $G_{n} \times G_{n}$ on $[0,1]^{2}$. We will search over all piecewise linear $\gamma \mathrm{s}$ passing through the nodes of this grid.

- Denote a point on the grid $(i / n, j / n)$ by (i, j). denote by $N_{i j}$ be the set of nodes that are allowed to go to (i, j). For instance:

$$
N_{i j}=\{(k, I) \mid 0<k<i, 0<l<j\} .
$$

- Let $L(k, I ; i, j)$ denote a straight line joining the nodes (k, I) and (i, j); for $(k, I) \in N_{i j}$ this is a line with slope strictly between 0 and 90 degrees. This sets up the iterative optimization problem:

$$
\begin{equation*}
(\hat{k}, \hat{l})=\underset{(k, l) \in N_{j j}}{\operatorname{argmin}} E(k / n, I / n ; L(k, l ; i, j)), \tag{2}
\end{equation*}
$$

(Dynamic Programming Algorithm)
$E=\operatorname{zeros}(n, n) ; E(1,:)=\infty ; E(:, 1)=\infty ; E(1,1)=0$; for $i=2: n$
for $j=2: n$
for Num = 1:size(N,1)
$\mathrm{k}=\mathrm{i}-\mathrm{N}(\mathrm{Num}, 1)$;
I = j-N(Num,2);
if ($k>0 \& />0$)
$\mathrm{Hc}($ Num $)=\mathrm{H}(\mathrm{k}, \mathrm{l})+$ FunctionE(f,g,k, $\mathrm{i}, \mathrm{l}, \mathrm{j})$;
else $\mathrm{Hc}($ Num $)=\infty$;
end $H(i, j)=\min (H c) ;$ end
end
end

Figure: Matching of functions using dynamic programming. In each row the left panel shows two function f and g. The middle row shows the optimal $\hat{\gamma}$ that minimizes the cost function in Eqn. 1, drawn over the partial cost function H. The right panel shows the functions f and $g(\hat{\gamma})$ with the resulting correspondences.

