ELASTIC FUNCTIONAL DATA ANALYSIS

Anuj Srivastava

Department of Statistics, Florida State University

(< 3) < 3) < 3) </pre>

Outline

- Past Summary and Limitations
- 2 Formalization of Registration Problem
- Fisher-Rao Metric and Square-Root Representations
- 4 Modeling Functional Data
- 5 Dynamic Programming

Outline

Past Summary and Limitations

- 2 Formalization of Registration Problem
- 3 Fisher-Rao Metric and Square-Root Representations
- 4 Modeling Functional Data
- 5 Dynamic Programming

FDA as Setup So Far

Focused on L²([0, 1], ℝ), the set of squared-integrable functions on interval [0, 1], with the Hilbert structure give by the inner product ∫₀¹ f₁(t)f₂(t) dt, leading to the distance:

$$||f_1 - f_2|| = \sqrt{\langle f_1 - f_2, f_1 - f_2 \rangle}$$

- We can perform several types of analysis using this structure.
- Given several observations, we can compute the mean and the covariance of the fitted functions.
- We can perform fPCA and study the modes of variability.
- We can impose some statistical models on the function space using finite-dimensional approximations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Problems with this Setup

- Most of the FDA literature is centered around the L² norm. But there are some major problems with this choice.
- Distances (under \mathbb{L}^2 metric) are larger than they should be.

 Misalignment (or phase variability) can be incorrectly interpreted as actual (amplitude) variability.

<ロ> (四) (四) (三) (三) (三)

Problems with FDA as Setup So Far

• Recall that the average under \mathbb{L}^2 norm is given by:

$$\bar{f}(t)=\frac{1}{n}\sum_{i=1}^n f_i(t) \ .$$

• Function averages under the \mathbb{L}^2 norm are not representative!

Individual functions are all bimodal and the average is multimodal!

 In *t*, the geometric features (peaks and valleys) are smoothed out. They are interpretable attributes in many situations and they need to be preserved

FPCA: Data With Phase Variability

n = 50 functions, $f_i(t) = f_0(\gamma_i(t))$, γ_i s are random time warps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

FPCA: Data With Phase Variability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• \mathbb{L}^2 norm uses vertical registration:

$$\|f_1 - f_2\|^2 = \int_0^1 (f_1(t) - f_2(t))^2 dt$$
.

For each t, $f_1(t)$ is being compared with $f_2(t)$.

• The geodesic path (interpreted as the deformation between *f*₁ and *f*₂) is unnatural as geometric features (peaks and valleys) are lost or created arbitrarily.

<ロ> (四) (四) (三) (三) (三)

Real Issue

• What if the variability is more naturally horizontal:

• Or, maybe a combination of vertical and horizontal:

<ロ> (四) (四) (三) (三) (三)

• The question is: How can we detect the compute and decompose the differences into horizontal and vertical components.

Outline

Past Summary and Limitations

- 2 Formalization of Registration Problem
- 3 Fisher-Rao Metric and Square-Root Representations
- 4 Modeling Functional Data
- 5 Dynamic Programming

The Registration Problem

• The main issue:

One of the most important challenge in functional and shape data analysis is registration

- Several other names: matching/correspondence/alignment/....
- Most of the metrics used in data analysis implicitly or explicitly assume a given registration.
- Example: sample mean x
 x
 x
 i = 1/n ∑
 ∑
 i=1 x
 x
 i, x
 i ∈ ℝ^d. This assumes that the *jth* elements of x
 i are matched.
- One should solve for optimal registration in the analysis rather than take the data for granted.

Registration Framework

(For the time being restrict to scalar functions on a unit interval. D = [0, 1], k = 1.

- How to perform registration?
- For functional objects of the type *f* : [0, 1] → ℝ, registration is essentially a diffeomorphic deformation of the domain.
- Let $\gamma : [0, 1] \rightarrow [0, 1]$ be a diffeomorphism. Then, then $f_1(t)$ is said to be registered to $f_2(\gamma(t))$. Composition by γ is called *time warping*.
- How to define and find optimal γ? The warping γ should be chosen so that the geometric features (peaks and valleys) are well aligned.

The deformation t → γ(t) is called the *phase variability* and the residual f₁(t) − f₂(γ(t)) is called the *amplitude* or *shape* variability.

590

Desired Properties

Problem Setup:

- Let $f_1, f_2 : [0, 1] \to \mathbb{R}$ be two functions.
- Γ is the group of orientation-preserving diffeomorphisms of [0, 1] to itself. Γ is a group with composition. γ_{id} is the identity element.
- Question: What should be the objective function: *E*(*f*₁, *f*₂ ο γ), for defining optimal registration?

Desired Properties of E:

- If $\hat{\gamma}$ registers f_1 to f_2 , then $\hat{\gamma}^{-1}$ should register f_2 to f_1 .
- If f₂ = cf₁ for a positive constant c, then γ̂ = γ_{id}. Shapes are more important than heights.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

• It will be nice to have $min_{\gamma}E(f_1, f_2 \circ \gamma)$ as a proper metric.

Current Registration Formulation

 A natural quantity to define E for optimal registration is the L² norm, i.e.

$$\hat{\gamma} = \mathrm{arg\,inf}_{\gamma\in\Gamma}(\|\mathit{f}_1 - \mathit{f}_2\circ\gamma\|^2$$
).

• However, this choice is degenerate – pinching effect!

Current Registration Formulation

• Common solution – add penalty:

$$\hat{\gamma} = \arg \inf_{\gamma \in \Gamma} (\|f_1 - f_2 \circ \gamma\|^2 + \lambda \mathcal{R}(\gamma)).$$

- Effectively reducing the search space, not really solving the problem.
- Example: Using the first order penality $\mathcal{R} = \int_{\mathcal{D}} |\dot{\gamma}(t)|^2 dt$.

• One can use other penalty terms instead.

Problems: Penalized \mathbb{L}^2 Alignment

• The right balance between alignment and penalty?

500

Problems: Penalized \mathbb{L}^2 Alignment

• Asymmetry: Discussed earlier

$$\inf_{\gamma}(\|f_1 - f_2 \circ \gamma\|^2 + \lambda \mathcal{R}(\gamma)) \neq \inf_{\gamma}(\|f_1 \circ \gamma - f_2\|^2 + \lambda \mathcal{R}(\gamma)).$$

Triangle inequality: The following does not hold –

$$\inf_{\gamma} (\|f_1 - f_3 \circ \gamma\|^2 + \lambda \mathcal{R}(\gamma))) \leq \inf_{\gamma} (\|f_1 \circ \gamma - f_2\|^2 + \lambda \mathcal{R}(\gamma)) \\ + \inf_{\gamma} (\|f_2 \circ \gamma - f_3\|^2 + \lambda \mathcal{R}(\gamma)) .$$

Most fundamental issue: Not invariant to warping

$$\|f\| \neq \|f \circ \gamma\| .$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

The norm $||f \circ \gamma||$ can be manipulated to have a large range of values, from min(|f|) to max(|f|) on [0, 1].

Why Invariance to Warping

• Registration is preserved under identical warping! $[f_1(t), f_2(t)]$ are registered before warping, and $[f_1(\gamma(t)), f_2(\gamma(t))]$ are registered after warping.

• The metric or objective function for measuring registration should also be invariant to identical warping.

《曰》 《圖》 《圖》 《圖》

• \mathbb{L}^2 norm is not invariant to identical warping.

Desired Properties for Objective Function

We want to use a cost function $d(f_1, f_2)$ for alignment, so that:

- Invariance: d(f₁, f₂) = d(f₁ ∘ γ, f₂ ∘ γ), for all γ.
 Technically, the action of Γ on F is by isometries.
- Registration problem can be:

$$(\gamma_1^*, \gamma_2^*) = \operatorname{arginf}_{\gamma_1, \gamma_2 \in \tilde{\Gamma}} d(f_1 \circ \gamma_1, f_2 \circ \gamma_2).$$

 $\tilde{\Gamma}$ is a closure of Γ to make orbits closed set.

- Symmetry will hold by definition.
- Triangle inequality: Let $d_s(f_1, f_2) = \inf_{\gamma_1, \gamma_2} d(f_1 \circ \gamma_1, f_2 \circ \gamma_2)$. Then, we want:

$$d_s(f_1, f_3) \leq d_s(f_1, f_2) + d_s(f_2, f_3)$$
.

 We want d_s to be proper metric so that we can use d_s for ensuing statistical analysis.

Outline

2 Formalization of Registration Problem

Fisher-Rao Metric and Square-Root Representations

- 4 Modeling Functional Data
- 5 Dynamic Programming

• There exists a distance that satisfies all these properties. It is called the *Fisher-Rao Distance*:

 $d_{FR}(f_1, f_2) = d_{FR}(f_1 \circ \gamma, f_2 \circ \gamma)$, for all $f_1, f_2 \in \mathcal{F}, \gamma \in \Gamma$.

For many years, this nice invariant property was well known in the literature. The question was: How to compute d_{FR} ? The definition was to difficult to lead to a simple expression.

 Klassen introduced the SRVF in 2007. (Has similarities to the complex square-root of Younes 1999.) Define a new mathematical representation called square-root velocity function (SRVF):

$$q(t) \equiv \begin{cases} \frac{\dot{f}(t)}{\sqrt{|\dot{f}(t)|}} & |\dot{f}(t)| \neq 0\\ 0 & |\dot{f}(t)| = 0 \end{cases}$$

 $(f:[0,1] \rightarrow \mathbb{R}^n, q:[0,1] \rightarrow \mathbb{R}^n)$

• SRVF is invertible up to a constant: $f(t) = f(0) + \int_0^t |q(s)| q(s) ds$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

SRVF Representation

- Under SRVF, the Fisher-Rao distance simplifies: $d_{FR}(f_1, f_2) = ||q_1 - q_2||.$
- The SRVF of (f ∘ γ) is (q ∘ γ)√γ. Just by chain rule. We will denote (q, γ) = (q ∘ γ)√γ.
 Commutative Diagram:

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

SRVF Representation

• *Lemma*: This distance satisfies: $d_{FR}(f_1, f_2) = d_{FR}(f_1 \circ \gamma, f_2 \circ \gamma)$ We need to show that $||(q_1 \circ \gamma)\sqrt{\dot{\gamma}} - (q_2 \circ \gamma)\sqrt{\dot{\gamma}}|| = ||q_1 - q_2||$.

$$\begin{aligned} \|(q_1, \gamma) - (q_2, \gamma)\|^2 &= \int_0^1 (q_1(\gamma(t))\sqrt{\dot{\gamma}(t)} - q_2(\gamma(t))\sqrt{\dot{\gamma}(t)})^2 dt \\ &= \int_0^1 (q_1(\gamma(t)) - q_2(\gamma(t)))^2 \dot{\gamma}(t) dt = \|q_1 - q_2\|^2 \,. \end{aligned}$$

- Corollary: For any q ∈ L² and γ ∈ Γ_I, we have ||q|| = ||(q, γ)||. This group action is norm preserving, like a rotation. Can't have pinching!
- Registration Solution:

$$(\gamma_1^*,\gamma_2^*) = \operatorname{arginf}_{\gamma_1,\gamma_2} \| (\boldsymbol{q}_1 \circ \gamma_1) \sqrt{\dot{\gamma}_1} - (\boldsymbol{q}_2 \circ \gamma_2) \sqrt{\dot{\gamma}_2} \|.$$

One approximates this solution with:

$$\gamma^* = \operatorname*{arginf}_{\gamma} \| \boldsymbol{q}_1 - (\boldsymbol{q}_2 \circ \gamma) \sqrt{\dot{\gamma}} \|$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

This is solved using dynamic programming.

Background Story

- Where does SRVF come from?
- Fisher-Rao Riemannian Metric: For functions, there is a F-R metric

$$\langle\langle \delta f_1, \delta f_2 \rangle\rangle_f = \int_0^1 \dot{\delta} f_1(t) \dot{\delta} f_2(t) \frac{1}{\dot{f}(t)} dt$$

• Under F-R metric, the time warping action is by Isometry:

$$\langle \langle \delta f_1, \delta f_2 \rangle \rangle_f = \langle \langle \delta f_1 \circ \gamma, \delta f_2 \circ \gamma \rangle \rangle_{f \circ \gamma}$$

(Note this is different from the F-R metric for pdfs, but same as the F-R for cdfa.)

• Under the mapping $f \mapsto q$, Fisher-Rao metric transforms to the \mathbb{L}^2 metric:

$$\langle \langle \delta f_1, \delta f_2 \rangle \rangle_f = \langle \delta q_1, \delta q_2 \rangle$$

Fisher-Rao metric \mathbb{L}^2 inner product

SRVF Mapping

Nice isometric, bijective mapping from ${\mathcal F}$ to ${\mathbb L}^2$

	Function Space \mathcal{F}	SRVF Space \mathbb{L}^2
	Absolutely continuous functions	Square-integrable functions
1	Functions and tangents	Functions and tangents
	f , and $\delta f_1, \delta f_2 \in T_f(\mathcal{F})$	$oldsymbol{q},\deltaoldsymbol{q}_1,\deltaoldsymbol{q}_2\in\mathbb{L}^2$
2	Fisher-Rao Inner Product	L ² inner product
	$\int_0^1 \dot{\delta f}_1(t) \dot{\delta f}_2(t) \frac{1}{\dot{f}(t)} dt$	$\int_0^1 \delta q_1(t) \delta q_2(t) dt$
3	Fisher-Rao Distance	^{⊥2} norm
	$d_{FR}(f_1, f_2) = ???$	\mathbb{L}^2 norm: $\ q_1 - q_2 \ $
4	Geodesic Under Fisher-Rao	Straight line
	??	$ au\mapsto ((1- au)q_1+ au q_2)$
5	Mean of functions under <i>d_{FR}</i>	Cross-Section Mean
	??	$\frac{1}{n}\sum_{i=1}^{n}q_{i}$
6.	Registration under <i>d_{FR}</i>	Registration under \mathbb{L}^2
	$\inf_{\gamma} d_{FR}(f_1, f_2 \circ \gamma)$	$\inf_\gamma \ oldsymbol{q}_1 - (oldsymbol{q}_2 \circ \gamma) \sqrt{\dot\gamma}) \ $
7	FPCA analysis under <i>d_{FR}</i>	FPCA analysis under \mathbb{L}^2 norm

Any item on the left can be accomplished by computing the corresponding item on the right and bringing back the results.

三 のへの

Pairwise Registration: Examples

Liquid chromatography - Mass spectrometry data

Sac

æ

Multiple Registration

- Align each function to a template. The template can be the sample mean but under what metric?
- Mean under the quotient space metric:

$$ar{m{q}} = \operatorname*{arginf}_{m{q} \in \mathbb{L}^2} \left(\inf_{\gamma_i} \|m{q} - (m{q}_i, \gamma_i)\|^2
ight)$$

Iterative procedure:

- Initialize the mean μ .
- Align each q_i s to the mean using pairwise alignment to obtain $\hat{\gamma}_i = \operatorname{arginf}_{\gamma_i} \|q (q_i, \gamma_i)\|^2$, and set $\tilde{q}_i = (q_i, \hat{\gamma}_i)$.
- O Update mean using $\mu = \frac{1}{n} \sum_{i=1}^{n} \tilde{q}_i$.
- Oheck for convergence. If not converged, go to step 2.

Multiple Registration: Examples

- One can view this separation f_i = (f̃_i, γ_i), as being analogous to polar coordinates of a vector v = (r, θ).
- In most cases, one of the two components is more useful than the other. So, separation helps put different weights on these components.

Multiple Registration: Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Matlab Code - Demo

Alignment After Transformation

Sometimes it is useful to transform the data before applying alignment procedure. Some of these transformations are: $|f_i(t)|$, $\dot{f}_i(t)$, $\log |f_i(t)|$, etc.

• Absolute Value: When optimal points are to be aligned (irrespective of them being peaks or valleys).

Alignment After Transformation

• Derivatives: When aligning montonoic functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Penalized Elastic Alignment

- If we want to control the elasticity, we can also add a roughness penalty. inf_{γ∈Γ} (||q₁ − (q₂, γ)||² + λR(γ))^{1/2}
- For example, using a first order penalty: $\mathcal{R}(\gamma) = \|1 \sqrt{\dot{\gamma}}\|^2$.

 We loose some nice mathematical properties - no longer have a metric in the quotient space.

《曰》 《聞》 《臣》 《臣》 三臣 …

Outline

2 Formalization of Registration Problem

- Fisher-Rao Metric and Square-Root Representations
- 4 Modeling Functional Data
- 5 Dynamic Programming

How about modeling functional variables using elastic representations?

- Focus on FPCA based dimension reduction and modeling.
- Sequential Approach: First separate the amplitude and phase components of the daya, then perform FPCA for each component separately.
- Joint Approach: Use a model that performs alignment and FPCA (of amplitudes) simultaneously.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Sequential Approach

- Separate phase and amplitude components. The input data is $\{f_i\}$ of $\{q_i\}$, and the output is the amplitude $\{\tilde{q}_i\}$ and phase $\{\gamma_i\}$.
- Perform fPCA of amplitudes $\{\tilde{q}_i\}$. Obtain the dominant basis function $\mathcal{B} = \{b_1, b_2, ...\}$.
- Perform fPCA of phases: Convert phases into tangent vectors: $v_i = \exp_1^{-1}(\sqrt{\gamma_i})$. Perform fPCA of $\{v_i\}$ and obtain the dominant basis $\mathcal{H} = \{h_1, h_2, \dots, \}$.
- Jointly model the coefficients of phase and amplitude components (and also the starting points {*f_i*(0)}).
- Generative model: Randomly generate an amplitude [q] and a phase γ. Form the function f and compose f ∘ γ. This is a random realization from the model.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Statistical Model for Elastic FPCA

Assuming that the observations follow the model:

$$q_i = SRVF(f_i),$$

$$(q_i, \gamma_i) \equiv q_i(\gamma_i(t))\sqrt{\dot{\gamma}_i(t)} = \mu(t) + \sum_{j=1}^{\infty} c_{i,j}b_j(t)$$

where:

- μ(t) is the expected value of q_i(t),
- $\{\gamma_i\}$ are unknown time warpings,
- $\{b_j\}$ form an orthonormal basis of \mathbb{L}^2 , and
- c_{i,j} ∈ ℝ are coefficients of q_i with respect to {b_j}. In order to ensure that μ is the mean of (q_i, γ_i), we impose the condition that the sample mean of {c_{i,j}} is zero.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Solution:

$$(\hat{\mu}, \hat{b}) = \operatorname*{argmin}_{\mu, \{b_j\}} \left(\sum_{i=1}^n \operatorname*{argmin}_{\gamma \in \Gamma} \| (\boldsymbol{q}_i, \gamma) - \mu - \sum_{j=1}^J \boldsymbol{c}_{i,j} \boldsymbol{b}_j \|^2 \right) \;,$$

and set $\hat{c}_{i,j} = \left\langle (q_i, \gamma_i^*) - \mu, \hat{b}_j \right\rangle$.

• Estimate μ using sample mean:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{q}_i, \gamma_i^*) \; .$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

• Estimate $\{b_j\}$ using PCA.

Elastic FPCA: Example

<ロ> (四) (四) (四) (日) (日)

æ

Outline

2 Formalization of Registration Problem

- Fisher-Rao Metric and Square-Root Representations
- 4 Modeling Functional Data
- 5 Dynamic Programming

Dynamic Programming Algorithm

- An exact algorithm for solving some types of optimization problems.
- Idea: Simplify a complicated problem by breaking it down into a sequence of simpler sub-problems in a recursive manner. Can only be done if the cost function is additive over the search space.
- Principle of DP:

If the shortest path from Boston to LA passes through Chicago, then the shortest path from Chicago to LA will be a piece of that shortest path.

• Let $f, g : [0, 1] \rightarrow \mathbb{R}$ be two given functions and we want to solve for:

$$\hat{\gamma} = \operatorname*{argmin}_{\gamma \in \Gamma} \left(\int_0^1 |f(t) - g(\gamma(t))|^2 dt \right) . \tag{1}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

 To decompose the large problem into several subproblems, define a partial cost function:

$$E(s,t;\gamma) = \int_{s}^{t} |f(\tau) - g(\gamma(\tau))|^{2} d\tau$$

so that our original cost function is simply $E(0, 1; \gamma)$.

Dynamic Programming Algorithm

• Define a uniform partition $G_n = \{1/n, 2/n, ..., (n-1)/n, 1\}$ of [0, 1] and form a grid $G_n \times G_n$ on $[0, 1]^2$. We will search over all piecewise linear γ s passing through the nodes of this grid.

Denote a point on the grid (i/n, j/n) by (i, j). denote by N_{ij} be the set of nodes that are allowed to go to (i, j). For instance:

$$N_{ij} = \{(k, l) | 0 < k < i, 0 < l < j\}.$$

• Let L(k, l; i, j) denote a straight line joining the nodes (k, l) and (i, j); for $(k, l) \in N_{ij}$ this is a line with slope strictly between 0 and 90 degrees. This sets up the iterative optimization problem:

$$(\hat{k}, \hat{l}) = \underset{(k,l) \in N_{ij}}{\operatorname{argmin}} E(k/n, l/n; L(k, l; i, j)) ,$$
 (2)

Dynamic Programming Algorithm

```
(Dynamic Programming Algorithm)
E = zeros(n, n); E(1, :) = \infty; E(:, 1) = \infty; E(1, 1) = 0;
          for i = 2 : n
              for j = 2 : n
                  for Num = 1:size(N,1)
                      k = i - N(Num, 1);
                     I = j - N(Num, 2);
                      if (k > 0 \& l > 0)
                         Hc(Num) = H(k,l) + FunctionE(f,g,k,i,l,j);
                      else
                         Hc(Num) = \infty;
                  end
                  H(i,j) = min(Hc);
                  end
              end
          end
```

▲ロ▶ ▲母▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Figure: Matching of functions using dynamic programming. In each row the left panel shows two function *f* and *g*. The middle row shows the optimal $\hat{\gamma}$ that minimizes the cost function in Eqn. 1, drawn over the partial cost function *H*. The right panel shows the functions *f* and $g(\hat{\gamma})$ with the resulting correspondences.